Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b: Tam giác AHB vuông tại H, đường cao AH
=> AD.BD=DH2
Tương tự: AE.EC=HE2
=> AD.BD+AE.EC=DH2+HE2
=DE2 (Pytago)
=AH2 (ADHE là hình chữ nhật vì có 3 góc vuông)
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
Tâm I là trung điểm của AH
a) Chứng minh : BHCK là hình bình hành
Xét tứ giác BHCK có : MH = MK = HK/2
MB = MI = BC/2
Suy ra : BHCK là hình bình hành
b) BK vuông góc AB và CK vuông góc AC
Vì BHCK là hình bình hành ( cmt )
Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )
mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )
Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )
c) Chứng minh : BIKC là hình thang cân
Vì I đối xứng với H qua BC nên BC là đường trung bình của HI
Mà M thuộc BC Suy ra : MH = MI ( tính chất đường trung trực )
mà MH = MK = HK/2 (gt)
Suy ra : MI = MH = MK = 1/2 HC
Suy ra : Tam giác HIK vuông góc tại I
mà BC vuông góc HI (gt)
Suy ra : IC // BC
Suy ra : BICK là hình thang (1)
Ta có : BC là đường trung trực của HI (cmt)
Suy ra : CI = CH
Kéo dài AC cắt BD tại M.
Ta có : CH // BM ( vìcùng vuông góc với AB )
--> \(\frac{IH}{BD}=\frac{AI}{AD};\frac{IC}{DM}=\frac{AI}{AD}\rightarrow\frac{IH}{BD}=\frac{IC}{DM}\left(1\right)\)
Mặt khác: CD=BD(tính chất 2 tiếp tuyến cắt nhau) --> góc DCB= góc DBC
Mà : góc DCB + góc DCM =90o; góc DBC +góc CMB =90o --> góc DCM =góc CMD -->MD =CD ,mà CD=DB-->MD=DB (2)
Từ 1 và 2 --> IH=IC -->I là trung điểm CH