Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
a) Ta có: \(1+1=2\Leftrightarrow\frac{AB^2}{AB^2}+\frac{AC^2}{AC^2}=2\Leftrightarrow\frac{BC^2-AC^2}{AB^2}+\frac{BC^2-AB^2}{AC^2}=2\)
\(\Leftrightarrow\frac{BC^2}{AB^2}+\frac{BC^2}{AC^2}-\frac{AC^2}{AB^2}-\frac{AB^2}{AC^2}=2\)(*)
Lại có: \(\Delta\)DHA ~ \(\Delta\)ABC (g.g) \(\Rightarrow\frac{BC}{AB}=\frac{AH}{HD}\Leftrightarrow\frac{BC^2}{AB^2}=\frac{AH^2}{HD^2}\)(1)
\(\Delta\)ABC ~ \(\Delta\)KAH (g.g) \(\Rightarrow\frac{BC}{AC}=\frac{AH}{HK}\Leftrightarrow\frac{BC^2}{AC^2}=\frac{AH^2}{HK^2}\)(2)
\(\Delta\)ABC ~ \(\Delta\)HBA (g.g) \(\Rightarrow\frac{AC}{AB}=\frac{AH}{BH}\Leftrightarrow\frac{AC^2}{AB^2}=\frac{AH^2}{BH^2}\)(3)
Tương tự: \(\frac{AB}{AC}=\frac{AH}{CH}\Leftrightarrow\frac{AB^2}{AC^2}=\frac{AH^2}{CH^2}\)(4).
Thay hết (1); (2); (3) và (4) vào (*) ta được: \(\frac{AH^2}{HD^2}+\frac{AH^2}{HK^2}-\frac{AH^2}{BH^2}-\frac{AH^2}{CH^2}=2\)
\(\Leftrightarrow\frac{1}{HD^2}+\frac{1}{HK^2}-\frac{1}{BH^2}-\frac{1}{CH^2}=\frac{2}{AH^2}\)(Chia cả 2 vế cho AH2)
\(\Leftrightarrow\frac{1}{HD^2}+\frac{1}{HK^2}=\frac{1}{BH^2}+\frac{1}{CH^2}+\frac{2}{AH^2}\)(đpcm).
b) Ta có: \(\Delta\)ABC ~ \(\Delta\)DBH (g.g) \(\Rightarrow\frac{AB}{AC}=\frac{DB}{DH}\)
\(\Delta\)ABC ~ \(\Delta\)KHC (g.g) \(\Rightarrow\frac{AB}{AC}=\frac{HK}{KC}\). Nhân theo vế 2 hệ thức trên:
\(\Rightarrow\frac{AB^2}{AC^2}=\frac{DB.HK}{KC.DH}\Leftrightarrow\frac{AB^2}{AC^2}.\frac{DH}{HK}=\frac{DB}{KC}\)(5)
Dễ chứng minh tứ giác ADHK là hình chữ nhật \(\Rightarrow\frac{DH}{HK}=\frac{AK}{AD}\)
Mà \(\Delta\)DAK ~ \(\Delta\)CAB (g.g) \(\Rightarrow\frac{AK}{AD}=\frac{AB}{AC}\)\(\Rightarrow\frac{DH}{HK}=\frac{AB}{AC}\)(6)
Từ (6) & (5) \(\Rightarrow\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{DB}{KC}\Leftrightarrow\frac{AB^3}{AC^3}=\frac{DB}{KC}\)(đpcm).
c) Theo hệ thức lượng trong tam giác vuông: \(BH^2=BD.AB;\) \(CH^2=CK.AC\)
\(\Rightarrow\left(BH.CH\right)^2=BD.AB.CK.AC=BD.CK.AB.AC\)
Mặt khác: \(S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow\left(BH.CH\right)^2=BD.CK.BC.AH\).
Lại có: \(AH^2=BH.CH\)(Hệ thức lượng)
\(\Rightarrow AH^4=BD.CK.BC.AH\Leftrightarrow AH^3=BD.CK.BC\)(đpcm).
Kurokawa neko: câu a bạn có thể giải theo hệ thức lượng sẽ ngắn và đơn giản hơn nhiều
a/ Đặt BH = x (x>0) (đvđd) => CH = 100-x (đvđd)
Áp dụng hệ thức về cạnh trong tam giác ta có : \(BH.HC=AH^2\) hay
\(x\left(100-x\right)=48^2\Leftrightarrow x^2-100x+48^2=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=36\\x=64\end{array}\right.\)
1. Nếu x = 36 thì \(AB=\sqrt{AH^2+BH^2}=\sqrt{48^2+36^2}=60\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{48^2+64^2}=80\)
2. Nếu x = 64 thì AB = 80 , AC = 60
b/ Ta có : góc ABD = góc ACB => góc ABD + góc ABC = góc ACB + góc ABC = 90 độ
=> BC vuông góc với BD tại B
Áp dụng hệ thức về cạnh trong tam giác vuông BDC có đường cao AB :
\(\frac{1}{AB^2}=\frac{1}{BD^2}+\frac{1}{BC^2}\)(đpcm)
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2.AC^2}\)
\(\Leftrightarrow AH^2=\frac{AB^2.AC^2}{AB^2+AC^2}\Rightarrow\sqrt{AH^2}=\sqrt{\frac{AB^2.AC^2}{AB^2+AC^2}}\)
\(\Leftrightarrow AH=\frac{AB.AC}{\sqrt{AB^2+AC^2}}\)
nếu vậy thì anh giải thích làm sao ra vậy giúp em nha