Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik chưa có đề ôn tập hk2 nhưng mik có các bt hình hok lp 7 nè,bn muốn tham khảo ko?
GIÁ TRỊ LỚN NHẤT ,GIÁ TRỊ NHỎ NHẤT CỦẢ MỘT BIỂU THỨC
1/ Cho biểu thức f( x ,y,...)
a/ Ta nói M giá trị lớn nhất ( GTLN) của biểu thức f(x,y...) kí hiệu max f = M nếu hai điều kiện sau đây được thoả mãn:
Với mọi x,y... để f(x,y...) xác định thì :
f(x,y...) M ( M hằng số) (1)
Tồn tại xo,yo ... sao cho:
f( xo,yo...) = M (2)
b/ Ta nói m là giá trị nhỏ nhất (GTNN) của biểu thức f(x,y...) kí hiệu min f = m nếu hai điều kiện sau đây được thoả mãn :
Với mọi x,y... để f(x,y...) xác định thì :
f(x,y...) m ( m hằng số) (1’)
Tồn tại xo,yo ... sao cho:
f( xo,yo...) = m (2’)
2/ Chú ý : Nếu chỉ có điều kiện (1) hay (1’) thì chưa có thể nói gì về cực trị của một biểu thức chẳng hạn, xét biểu thức : A = ( x- 1)2 + ( x – 3)2. Mặc dù ta có A 0 nhưng chưa thể kết luận được minA = 0 vì không tồn tại giá trị nào của x để A = 0 ta phải giải như sau:
A = x2 – 2x + 1 + x2 – 6x + 9 = 2( x2 – 4x + 5) = 2(x – 2)2 + 2 2
A = 2 x -2 = 0 x = 2
Vậy minA = 2 khi chỉ khi x = 2
II/ TÌM GTNN ,GTLN CỦA BIỂU THƯC CHỨA MỘT BIẾN
1/ Tam thức bậc hai:
Ví dụ: Cho tam thức bậc hai P = ax2 + bx + c .
Tìm GTNN của P nếu a 0.
Tìm GTLN của P nếu a 0
Giải : P = ax2 + bx +c = a( x2 + x ) + c = a( x + )2 + c -
Đặt c - =k . Do ( x + )2 0 nên :
- Nếu a 0 thì a( x + )2 0 , do đó P k. MinP = k khi và chỉ khi x = -
-Nếu a 0 thì a( x + )2 0 do đó P k. MaxP = k khi và chỉ khi x = -
2/ Đa thức bậc cao hơn hai:
Ta có thể đổi biến để đưa về tam thức bậc hai
Ví dụ : Tìm GTNN của A = x( x-3)(x – 4)( x – 7)
Giải : A = ( x2 - 7x)( x2 – 7x + 12)
Đặt x2 – 7x + 6 = y thì A = ( y - 6)( y + 6) = y2 - 36 -36
minA = -36 y = 0 x2 – 7x + 6 = 0 x1 = 1, x2 = 6.
3/ Biểu thức là một phân thức :
a/ Phân thức có tử là hằng số, mẫu là tam thức bậc hai:
Ví dụ : Tìm GTNN của A = .
Giải : A = . = = .
Ta thấy (3x – 1)2 0 nên (3x – 1) 2 +4 4 do đó theo tính chất a b thì với a, b cùng dấu). Do đó A -
minA = - 3x – 1 = 0 x = .
Bài tập áp dụng:
1. Tìm GTLN của BT : HD giải: .
2. Tìm GTLN của BT : HD Giải:
3. (51/217) Tìm giá trị nhỏ nhất của biểu thức:
b/ Phân thức có mẫu là bình phương của nhị thức.
Ví dụ : Tìm GTNN của A = .
Giải : Cách 1 : Viết A dưới dạng tổng hai biểu thức không âm
A = = 2 + 2
minA = 2 khi và chi khi x = 2.
Cách 2: Đặt x – 1 = y thì x = y + 1 ta có :
A = = 3 - + = ( -1)2 + 2
minA = 2 y = 1 x – 1 = 1 x = 2
tui chỉ có một chút thôi
1 người làm việc trong số giờ là:
6: 3 = 2 ( giờ )
Để làm xong ngôi nhà đó trong 2 giờ thì cần số người là :
2. 2 = 4 ( người )
Đ/s: 4 người
mk nha
TL
1 người là việc trong số giờ la
2.2=4 ( người )
trong 2 giờ để làm xong ngôi nhà đá cần số người là
6 : 3 = 2 ( giờ)
HT nha k hộ mik
Bạn vô link liên kết này nhé tin.tuyensinh247.com sau đó tìm từ khóaĐề khảo sát đầu năm lớp 7 môn Toán TP Ninh Bình 2018 - 2019 có đáp án là được. Hoặc bạn nhấn vào Đáp án - Đề thi rồi tìm chắc chắn sẽ có.
Văn cũng tương tự nha!
Văn:
k mk nha!
1 số điểm kt học kì 2 môn toán của một số hs đc ghi lại như sau
9 | 3 | 5 | 7 | 3 | 9 | 7 | 8 | 10 | 9 |
7 | 5 | 9 | 3 | 6 | 6 | 8 | 9 | 10 | 4 |
a,lập bảng tần số
b,tính số trung bình cộng
2 tính giá trị của biểu thức x^2-2x tại x=-1 và tại x=1
3,cho p(x)=4x^2-4+3x^3+2x+x^5 vàQ(x)=3x-2x^3+4-x^4+x^5
a,sắp xếp
b,tính p(x)+Q(x)
3 tìm nghiệm của đa thức p(x)=2x-4
5,cho tam giác ABC vuông tại A;BD là tia phân giác góc B(Dthuộc AC).kẻ DE vuông góc với BC(Ethuộc BC).cm rằng:
a,tam giác ABD=tam giác EBD
b,DF=DC
c,AD<DC