Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(ab-c=ab-a+a-c=a\left(b-1\right)+\left(a-c\right)\)
\(\Rightarrow\left|ab-c\right|=\left|a\left(b-1\right)+\left(a-c\right)\right|\)
\(\Rightarrow\left|ab-c\right|\le\left|a\left(b-1\right)\right|+\left|a+c\right|\)
\(\Rightarrow\left|ab-c\right|\le\left|a\right|\left|b-1\right|+\left|a-c\right|\)
Mà \(\left|a\right|< 1;\left|b-1\right|< 10;\left|a-c\right|< 10\)
\(\Rightarrow\left|ab-c\right|< 1.10+10\)
\(\Rightarrow\left|ab-c\right|< 20\left(đpcm\right)\)
hình bạn tự vẽ nhé
a. ví tam giác ABC là tam giác cân và có góc A bằng 90 độ nên tam giác ABC là tam giác vuông cân tại A
=> góc BAC = 90 độ và AB=AC
Xét tứ giác ABIC có góc BAC =90 độ, góc ABI = 90 độ (vì AIvuông góc với AB ), góc ACI =90độ (vì AC vuông góc với CI)
=> tứ giác ABIC là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
mà AB=AC (cmt)
=> Tứ giác ABIC là hình vuông (dấu hiệu nhận biết hình vuông)
=> AI là phân giác góc BAC
a: góc ABH=90-65=25 độ
b: Xét ΔCBD có
CH vừa là đường cao, vừa là trung tuyến
nên ΔCBD cân tại C
=>CH là phân giác của góc BCD
a) Ta có tam giác ABC cân tại A nên: \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(1)
Xét tam giác ADE có AD=AE (gt)
=> tam giác ADE cân tại A => \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AED}=\widehat{B}\)
Mà 2 góc ở vị trí đồng vị nên \(DE//BC\)(đccm)
b)Ta có AB=AE+EB và AC=AD+CD mà AB=AC, AE=AD => EB= CD
Xét tam giác BEC, tam giác BCD có:
EB= CD
\(\widehat{B}=\widehat{C}\)
BC chung
=> tam giác BEC= tam giác CDB ( c_g_c)
=>\(\widehat{BEC}=\widehat{BDC}=90^0\)
=> \(CE\perp AB\)(ĐCCM)
d, CMTT câu b ta có ▲DMH cân tại D →góc DMA= góc DHA (*)
CMTT câu c ta có góc HDA= góc HCB (1)
Vì ▲BCD cân và có CA vuông góc với BD →góc HCD=góc HCB (2)
Từ (1) và (2)ta có góc HCD=góc HDA (**)
Cộng hai vế của (*) và (**)ta có DMA+HCD=DHA+HDA=90°
→▲DMC vuông→đpcm
Tham khảo:
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
MI=NI(gt)
Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)
b) Ta có: ΔIMC=ΔINC(cmt)
nên ˆMCI=ˆNCIMCI^=NCI^(hai góc tương ứng)
hay ˆBCA=ˆKCABCA^=KCA^
Xét ΔBAC vuông tại A và ΔKAC vuông tại A có
AC chung
ˆBCA=ˆKCABCA^=KCA^(cmt)
Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)
⇒CB=CK(hai cạnh tương ứng)
Ta có: MI⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)
hay MN//KB
Xét ΔCKB có
M là trung điểm của CB(gt)
MN//KB(cmt)
Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)
c) Ta có: MA=ME(gt)
mà A,M,E thẳng hàng
nên M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(cmt)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)
d) Ta có: ABEC là hình bình hành(cmt)
nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)
mà AB=AK(ΔCBA=ΔCKA)
nên EC=AK
Ta có: AB//EC(Cmt)
nên CE//KA
Xét tứ giác AECK có
CE//AK(cmt)
CE=AK(cmt)
Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét ΔCAB có
M là trung điểm của BC(gt)
MI//AB(cmt)
Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
Ta có: AECK là hình bình hành(cmt)
nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà I là trung điểm của AC(cmt)
nên I là trung điểm của EK
hay E,I,K thẳng hàng(đpcm)
31−43−(−53)+721−92−361+151
=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=31−43+53+721−92−361+151
=\left(\frac{1}{3}-\frac{2}{9}\right)+\left(-\frac{3}{4}-\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{72}=(31−92)+(−43−361)+(53+151)+721
=\left(\frac{3}{9}-\frac{2}{9}\right)+\left(-\frac{27}{36}-\frac{1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)+\frac{1}{72}=(93−92)+(−3627−361)+(159+151)+721
=\frac{1}{9}+\frac{-7}{9}+\frac{2}{3}+\frac{1}{72}=91+9−7+32+721
=-\frac{2}{3}+\frac{2}{3}+\frac{1}{72}=−32+32+721
=0+\frac{1}{72}=\frac{1}{72}=0+721=721
mk mới hok jop 6 à
có \(\left|a\right|< 1\),\(\left|b-1\right|< 10\)suy ra \(\left|a\right|.\left|b-1\right|< 10\Rightarrow\left|a\left(b-1\right)\right|< 10\Leftrightarrow\left|ab-a\right|< 10\)
\(\Leftrightarrow-10< ab-a< 10\)(1)
có \(\left|a-c\right|< 10\Leftrightarrow-10< a-c< 10\)(2)
cộng lần lượt các vế của (1) và (2) ta có \(-10+\left(-10\right)< ab-a+a-c< 10+10\Leftrightarrow-20< ab-c< 20\)
suy ra \(\left|ab-c\right|< 20\)