Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ còn thức
Hôm nay sẽ học xuyên đêm !
Kb với tớ !
Ths
\(x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\)
\(x^2+2x+1=0\)
\(\Leftrightarrow x^2+x+x+1=0\)
\(\Leftrightarrow x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Rightarrow x=-1\)
Ta có \(x.\left(x^2+x+1\right)-x^2.\left(1+x\right)-x-7\)
\(=x^3+x^2+x-x^2-x^3-x-7\)
\(=\left(x^3-x^3\right)-\left(x^2-x^2\right)-\left(x-x\right)-7\)
\(=-7\)
Do đó giá trị của biểu thức không phụ thuộc vào biến
Vậy...
\(5\left(x+3\right)-2x\left(x+3\right)=0\)
<=> \(\left(5-2x\right)\left(x+3\right)=0\)
<=> \(\hept{\begin{cases}5-2x=0\\x+3=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
\(4x\left(x-2018\right)-x+2018=0\)
<=> \(4x\left(x-2018\right)-\left(x-2018\right)=0\)
<=> \(\left(4x-1\right)\left(x-2018\right)=0\)
<=> \(\hept{\begin{cases}4x-1=0\\x-2018=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x+1-1\right)=0\)
<=> \(\left(x+1\right).x=0\)
<=> \(\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
học tốt
a) \(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(5\left(x+3\right)+2x\left(x+3\right)=0\)
\(\left(x+3\right)\left(5+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{-5}{2}\end{cases}}\)
b) \(4x\left(x-2018\right)-x+2018=0\)
\(4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018=0\\4x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2018\\x=\frac{1}{4}\end{cases}}\)
c) \(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+1-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)