Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(α) tiếp xúc với (S) tại A
⇒ (α) ⊥ IA
⇒ (α) nhận là vectơ pháp tuyến
(α) đi qua A(6; 2; -5)
⇒ (α): 5x + y – 6z – 62 = 0.
Tâm của mặt cầu (S) là trung điểm I (1; 1; 1) của đoạn thẳng AB và bán kính của mặt cầu (S) là R = IA = √62
Chọn A
Đường thẳng d đi qua M(-5;7;0) và có vectơ chỉ phương
Gọi H là hình chiếu của I lên (d). Ta có:
Đáp án B.
Mặt cầu (S) có tâm I(1;1;1) . Mặt phẳng (P)đi qua A và nhận I A → = ( 5 ; 1 ; - 6 ) làm vtpt
=> phương trình của (P) là: 5(x-6)+ 1(y-2) -6(z+5) = 0
<=> 5x + y – 6z - 62 = 0
Đáp án B
Gọi I, R là tâm và bán kính của mặt cầu (S) suy ra R =AB/2 = √6 và I(3; - 1; 4).
Khi đó phương trình mặt cầu (S) là:
(x - 3)² + (y + 1)² + (z - 4)² = 6 <= > x² + y² + z² - 6x + 2y - 8z + 20 = 0
Mặt cầu (S) có phương trình là