Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điện trở tương đương: \(R=\dfrac{\left(R1+R2\right)R3}{R1+R2+R3}=\dfrac{\left(15+25\right)10}{15+25+10}=8\Omega\)
\(U=U12=U3=12V\)(R12//R3)
\(I=U:R=12:8=1,5A\)
\(I3=U3:R3=12:10=1,2A\)
\(R1ntR2\Rightarrow I12=I1=I2\)
Mà: \(I12=I-I3=1,5-1,2=0,3A\)
\(\Rightarrow I12=I1=I2=0,3A\)
a,\(R1nt\left(R2//R3\right)=>Rtd=R1+\dfrac{R2R3}{R2+R3}=4+\dfrac{6.3}{6+3}=6\left(om\right)\)
b,\(=>I1=I23=\dfrac{Uab}{Rtd}=\dfrac{9}{6}=1,5A\)
\(=>U23=I23.R23=1,5.\dfrac{6.3}{6+3}=3V=U2=U3\)
\(=>I2=\dfrac{U2}{R2}=\dfrac{3}{6}=0,5A,=>I3=\dfrac{U3}{R3}=\dfrac{3}{3}=1A\)
c,\(=>Im=Ix=I23=\dfrac{1}{3}.1,5=0,5A\)
\(=>RTd=Rx+\dfrac{R2.R3}{R2+R3}=Rx+\dfrac{6.3}{6+3}=\dfrac{U}{Im}=\dfrac{9}{0,5}=18\)
\(=>Rx=16\left(om\right)\)
\(R_{12}=\dfrac{15.30}{15+30}=10\left(\Omega\right)\)
\(R_m=R_{12}+R_3=10+30=40\left(\Omega\right)\)
\(I_m=\dfrac{U_{AB}}{R_m}=\dfrac{12}{40}=0,3\left(A\right)\)
\(b,I_{12}=I_3=0,3\left(A\right)\)
\(\dfrac{I_1}{I_2}=\dfrac{R_2}{R_1}=\dfrac{30}{15}=\dfrac{2}{1}\)
\(\rightarrow I_1=0,2\left(A\right);I_2=0,1\left(A\right)\)
\(a,R_{23}=R_2+R_3=30+30=60\left(\Omega\right)\)
\(R_m=\dfrac{R_{23}.R_1}{R_{23}+R_1}=\dfrac{60.15}{60+15}=12\left(\Omega\right)\)
\(b,I_m=\dfrac{U_{AB}}{R_m}=\dfrac{12}{12}=1\left(A\right)\)
\(I_1+I_{23}=1\left(A\right)\)
\(\dfrac{I_1}{I_{23}}=\dfrac{R_{23}}{R_1}=\dfrac{60}{15}=\dfrac{4}{1}\)
\(\rightarrow I_1=0,8\left(A\right);I_{23}=0,2\left(A\right)\)
\(\rightarrow I_2=I_3=0,2\left(A\right)\)
a. \(R=R1+\left(\dfrac{R2.R3}{R2+R3}\right)=2+\left(\dfrac{6.3}{6+3}\right)=4\left(\Omega\right)\)
b. \(I=I1=I23=\dfrac{U}{R}=\dfrac{12}{4}=3A\left(R1ntR23\right)\)
\(U23=U2=U3=I13.R23=3\left(\dfrac{6.3}{6+3}\right)=6\left(V\right)\)(R2//R3)
\(\left\{{}\begin{matrix}I2=U2:R2=6:6=1A\\I3=U3:R3=6:3=2A\end{matrix}\right.\)
c. \(U_d=U_{23}=6V\Rightarrow\) đèn sáng bình thường.
a. Vì \(R_1ntR_2\) nên \(R_{12}=R_1+R_2=15+25=40\left(\text{Ω}\right)\)
Vì \(R_{12}//R_3\) nên \(\dfrac{1}{R_{td}}=\dfrac{1}{R_{12}}+\dfrac{1}{R_3}\Rightarrow R_{td}=\dfrac{R_{12}.R_3}{R_{12}+R_3}=\dfrac{40.10}{40+10}=8\left(\text{Ω}\right)\)
b. Ta có \(I=\dfrac{U}{R_{td}}=\dfrac{12}{8}=1,5\left(A\right)\)
mà \(U_{12}=U_3\Leftrightarrow R_{12}.I_{12}=R_3.I_3\Leftrightarrow40I_{12}=10I_3\Leftrightarrow I_3=4I_{12}\) (1)
mặt khác, ta có \(I=I_{12}+I_3\) (2)
Từ (1) và (2) \(\Rightarrow I_{12}+4I_{12}=1,5\Rightarrow I_{12}=0,3\left(A\right)\)
\(\Rightarrow I_3=I-I_{12}=1,5-0,3=1,2\left(A\right)\)
c. Ta có \(R_{td'}=\dfrac{R_{2x}.R_3}{R_{2x}+R_3}=\dfrac{\left(25+R_x\right)10}{R_x+25+10}=\dfrac{250+10R_x}{35+R_x}=7,5\left(\text{Ω}\right)\)
\(\Rightarrow R_x=5\left(\text{Ω}\right)\)
Bạn chụp thêm hình vẽ nữa chứ không biết mắc song song hay nối tiếp để làm