Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=2019\sqrt{2019}+2018\sqrt{2018}\)
\(\Leftrightarrow x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=2018\left(\sqrt{2019}+\sqrt{2018}\right)+\sqrt{2019}\)
\(\Leftrightarrow x+y.\left(\sqrt{2019}-\sqrt{2018}\right)^2=2018+\sqrt{2019}\left(\sqrt{2019}-\sqrt{2018}\right)\)
\(\Leftrightarrow x+y\left(4037-2\sqrt{2019.2018}\right)=4037-\sqrt{2019.2018}\)
\(\Leftrightarrow x+4037.y-4037=2y\sqrt{2019.2018}-\sqrt{2019.2018}\)
\(\Leftrightarrow x+4037y-4037=\left(2y-1\right).\sqrt{2019.2018}\)(1)
Do \(x;y\) hữu tỉ \(\Rightarrow x+4037y-4037\) và \(2y-1\) đều là số hữu tỉ
Mà \(\sqrt{2019.2018}\) là số vô tỉ
\(\Rightarrow\)đẳng thức (1) xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}2y-1=0\\x+4037y-4037=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{4037}{2}\end{matrix}\right.\)
Ta có:
\(\dfrac{2019}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2019}}=\dfrac{2018}{\sqrt{2018}}+\dfrac{1}{\sqrt{2018}}+\dfrac{2019}{\sqrt{2019}}-\dfrac{1}{\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}+\left(\dfrac{1}{\sqrt{2018}}-\dfrac{1}{\sqrt{2019}}\right)\)
Do \(\dfrac{1}{\sqrt{2018}}>\dfrac{1}{\sqrt{2019}}\) nên \(\dfrac{1}{\sqrt{2018}}-\dfrac{1}{\sqrt{2019}}\) dương \(\Rightarrow\dfrac{2019}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)
20192018−−−−√+20182019−−−−√=20182018−−−−√+12018−−−−√+20192019−−−−√−12019−−−−√=2018−−−−√+2019−−−−√+(12018−−−−√−12019−−−−√)20192018+20182019=20182018+12018+20192019−12019=2018+2019+(12018−12019)
Do 12018−−−−√>12019−−−−√12018>12019 nên 12018−−−−√−12019−−−−√12018−12019 dương ⇒20192018−−−−√+20182019−−−−√>2018−−−−√+2019−−−−√
\(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}\ge\frac{\left(\sqrt{2019}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}\)
Dấu "=" ko xảy ra nên \(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)
\(\frac{a^4}{2018}+\frac{b^4}{2019}=\frac{1}{4037}\)
\(\Leftrightarrow\frac{2019a^4+2018b^4}{2018\cdot2019}=\frac{a^2+b^2}{2018+2019}\)
\(\Leftrightarrow\left(2018+2019\right)\left(2019a^4+2018b^4\right)=2018\cdot2019\left(a^2+b^2\right)\)
\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4+2018\cdot2019\cdot a^4+2018\cdot2019b^4=2018\cdot2019\cdot a^2+2018\cdot2019\cdot b^2\)
\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4=2018\cdot2019\cdot a^2\left(1-a^2\right)+2018\cdot2019\cdot b^2\left(1-b^2\right)\)
\(\Leftrightarrow\left(2019a^2\right)^2+\left(2018b^2\right)^2=2\cdot2018\cdot2019\cdot a^2\cdot b^2\)
\(\Leftrightarrow\left(2019a^2-2018b^2\right)=0\)
\(\Leftrightarrow2019a^2=2018b^2\Leftrightarrow\frac{a^2}{2018}=\frac{b^2}{2019}=\frac{a^2+b^2}{2018+2019}=\frac{1}{4037}\)
\(\Rightarrow\frac{a^{2018}}{2018^{10009}}=\frac{b^{2018}}{2019^{1009}}=\frac{1}{4037^{1009}}\)
\(\Rightarrow P=\frac{2}{4037^{1009}}\)
Đặt \(2018=a\)
\(\Rightarrow\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}=\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
\(=\sqrt{\frac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}=\frac{a^2+a+1}{a+1}+\frac{a}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1=2019\)