K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2020

Ta có: \(m^2-2n^2=mn\)

\(\Leftrightarrow m^2-2n^2-mn=0\)

\(\Leftrightarrow m^2-n^2-n^2-mn=0\)

\(\Leftrightarrow\left(m^2-n^2\right)-\left(n^2-mn\right)=0\)

\(\Leftrightarrow\left(m-n\right)\left(m+n\right)-n\left(n-m\right)=0\)

\(\Leftrightarrow\left(m-n\right)\left(m+n\right)+n\left(m-n\right)=0\)

\(\Leftrightarrow\left(m-n\right)\left(m+n+n\right)=0\)

\(\Leftrightarrow\left(m-n\right)\left(m+2n\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m-n=0\\m+2n=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=n\\m=-2n\end{cases}}\)

TH1: Nếu \(m=n\)\(\Rightarrow m-n=0\)\(\Rightarrow A=\frac{m-n}{m+n}=0\)

TH2: Nếu \(m=-2n\)\(\Rightarrow A=\frac{-2n-n}{-2n+n}=\frac{-3n}{-n}=3\)

Vậy nếu \(m=n\)thì \(A=0\)

       nếu \(m=-2n\)thì \(A=3\)

24 tháng 11 2021

Cho m+n=1 và m.n khác 0.

Chứng minh m/(n^3 -1) + n/(m^3 - 1) = 2(mn - 2)/(m^2 . n^2  + 3)

4 tháng 9 2020

a) đk: \(x\ne\left\{0;2\right\}\)

Ta có:

\(M=\frac{x}{x-2}\div\frac{2x}{x^2-2x}\)

\(M=\frac{x}{x-2}\cdot\frac{x\left(x-2\right)}{2x}\)

\(M=\frac{x}{2}\)

b) \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\end{cases}}\)

Tại x = 3 thì giá trị của M là: \(M=\frac{3}{2}\)

c) Để \(M\ge0\Leftrightarrow\frac{x}{2}\ge0\Rightarrow x\ge0\)

Vậy khi \(x\ge0\Leftrightarrow M\ge0\)

27 tháng 2 2021

Tính giá trị biểu thức 2x^2-3x+1. Tại x thõa mãn x^2=1/4

16 tháng 4 2019

Tự vẽ hình nhé

Tạo hình: lấy điểm T thuộc đường thẳng DC( T không nằm trên đọan DC) sao cho góc DAT = góc BAM

                 lấy điểm H thuộc đường thẳng BC( H không nằm trên đọan BC) sao cho góc BAH = góc DAN.

Bạn tự c/m: \(\hept{\begin{cases}\Delta ATD=\Delta AMB\\\Delta ADN=\Delta ABH\end{cases}\Rightarrow\hept{\begin{cases}AT=AM\\AN=AH\end{cases}}}\) ( 2 cạnh tương ứng )

Tiếp theo c/m \(\hept{\begin{cases}\Delta TAN=\Delta MAN\\\Delta MAN=\Delta MAH\end{cases}\Rightarrow\hept{\begin{cases}\widehat{TNA}=\widehat{MNA}\\\widehat{NMA}=\widehat{HMA}\end{cases}}}\)( 2 góc tương ứng )

Đến đây bạn tự làm nốt nhé