Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{1+m^2}{1+n^2}=1+m^2-\frac{n^2\left(1+m^2\right)}{1+n^2}\le1+m^2-\frac{n^2\left(1+m^2\right)}{2}\)
Tương tự ta có
\(\frac{1+n^2}{1+p^2}\le1+n^2-\frac{p^2\left(1+n^2\right)}{2}\)
\(\frac{1+p^2}{1+m^2}\le1+p^2-\frac{m^2\left(1+p^2\right)}{2}\)
\(\Rightarrow A\le3+m^2+n^2+p^2-\frac{n^2\left(1+m^2\right)+p^2\left(1+n^2\right)+m^2\left(1+p^2\right)}{2}\)
\(=\frac{m^2+n^2+p^2-\left(m^2N^2+n^2p^2+p^2m^2\right)}{2}+3\)
\(\le\frac{m^2+n^2+p^2+2\left(mn+np+pm\right)}{2}+3\)
\(=\frac{\left(m+n+p\right)^2}{2}+3=\frac{1}{2}+3=\frac{7}{2}\)
\(a,b,c\in\left[0,1\right]\) do đó \(a^2+b^2+c^2\le a+b+c=1\)
Ta có: \(T=\text{∑}\left(a^2+1-\frac{b^2a^2+b^2}{1+b^2}\right)\)\(\le\text{∑}a^2+3-\text{∑}\frac{b^2a^2+b^2}{2}\)
\(=3+\frac{\text{∑}a^2-\text{∑}a^2b^2}{2}\le3+\frac{1}{2}\le\frac{7}{2}\)
Ta có: \(\sqrt{6}-\frac{m}{n}>0\Leftrightarrow\sqrt{6}n-m>0\Leftrightarrow6n^2>m^2\Leftrightarrow6n^2\ge m^2+1\) (Do m, n là các số tự nhiên).
Mặt khác \(m^2+1\equiv1;2\left(mod3\right)\Rightarrow m^2+1⋮̸3\).
Mà \(6n^2⋮3\) nên \(6n^2\ge m^2+1\).
Bất đẳng thức cần chứng minh tương đương với:
\(\sqrt{6}n>\frac{1}{2m}+m\Leftrightarrow6n^2>\left(\frac{1}{2m}+m\right)^2\).
Ta chỉ cần chứng minh:
\(\left(\frac{1}{2m}+m\right)^2< m^2+2\Leftrightarrow\frac{1}{4m^2}< 1\Leftrightarrow4m^2>1\) (luôn đúng với mọi m \(\in\) N*).
Vậy ta có đpcm.
Dòng thứ 4 là \(6n^2\ge m^2+2\) chứ không phải là \(6n^2\ge m^2+1\). Mình ghi nhầm :(
1/ \(a+1=\sqrt[4]{\frac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}-\sqrt[4]{\frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}=\sqrt{\frac{\sqrt{3}+1}{\sqrt{3}-1}}-\sqrt{\frac{\sqrt{3}-1}{\sqrt{3}+1}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}}=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
2/ \(a+b=5\Leftrightarrow\left(a+b\right)^3=125\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=125\)
\(\Rightarrow a^3+b^3=125-3ab\left(a+b\right)=125-3.1.5=110\)
3/ \(mn\left(mn+1\right)^2-\left(m+n\right)^2.mn\)
\(=mn\left(\left(mn+1\right)^2-\left(m+n\right)^2\right)\)
\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)
\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)
\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)
Do \(\left(m-1\right)m\left(m+1\right)\) và \(\left(n-1\right)n\left(n+1\right)\) đều là tích của 3 số nguyên liên tiếp nên chúng đều chia hết cho 3 \(\Rightarrow\) tích của chúng chia hết cho 36
4/
Do \(0\le x\le1\Rightarrow\left\{{}\begin{matrix}x\ge0\\x-1\le0\end{matrix}\right.\) \(\Rightarrow x\left(x-1\right)\le0\)
\(\Leftrightarrow x^2-x\le0\Leftrightarrow x^2\le x\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
5/ Đặt \(\left\{{}\begin{matrix}\sqrt{5a+4}=x\\\sqrt{5b+4}=y\\\sqrt{5c+4}=z\end{matrix}\right.\)
Do \(a+b+c=1\Rightarrow0\le a;b;c\le1\)
\(\Rightarrow2\le x;y;z\le3\) và \(x^2+y^2+z^2=5\left(a+b+c\right)+12=17\)
Khi đó ta có:
Do \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)
\(\Leftrightarrow x^2-5x+6\le0\Leftrightarrow x\ge\frac{x^2+6}{5}\)
Tương tự: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)
Cộng vế với vế:
\(A=x+y+z\ge\frac{x^2+y^2+z^2+18}{5}=\frac{17+18}{5}=7\)
\(\Rightarrow A_{min}=7\) khi \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Đặt \(d=\left(m,n\right)\)
Ta có :\(\hept{\begin{cases}m=ad\\n=bd\end{cases}}\)với \(\left(a,b\right)=1\)
Lúc đó
\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{ad+1}{bd}+\frac{bd+1}{ad}=\frac{\left(a^2+b^2\right)d+a+b}{abd}\)là số nguyên
Suy ra \(a+b⋮d\Rightarrow d\le a+b\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)
Vậy \(\left(m,n\right)\le\sqrt{m+n}\)(đpcm)