K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2015

Tui không vẽ hình đâu nha!

a) Xét Tam giác AMB = Tam giác AMC

Có: BM = MC ( M là trung điểm của BC)

Góc AMB= Góc AMC = 90 độ ( MA là đường trung trực của BC)

      AM chung 

=> Tam giác AMB = Tam giác AMC

b) Xét Tam giác AHM và Tam giác AKM

có: góc HAM = góc KAM ( vì  tg AMB = tg AMC)

      AM chung 

góc AHM=góc AKM

=> Tg AHM = Tg AKM

=> AH = AK (2 cạnh tương ứng)

c) Chưa nghĩ ra luôn T_T

 

10 tháng 5 2018

cái này k là toán thì là j

1 tháng 5 2020

100-79=

23 tháng 2 2021

Nếu tam giác ABC mà vuông tại A thì 2 tam giác ABM và ACM không thể bằng nhau đc

Mk nghĩ bn nên xem lại đề bài.

Bài 2: 

1: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có 

BC chung

\(\widehat{DCB}=\widehat{EBC}\)

Do đó: ΔBDC=ΔCEB

2: Xét ΔABD vuông tại D và ΔACE vuông tại E có

BD=CE

AB=AC

DO đó: ΔABD=ΔACE
Suy ra: \(\widehat{ABD}=\widehat{ACE}\)

hay \(\widehat{IBE}=\widehat{ICD}\)

3: Xét ΔAIB và ΔAIC có

AB=AC

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

SUy ra: \(\widehat{BAI}=\widehat{CAI}\)

=>AH là tia phân giác của góc BAC

Ta có: ΔABC cân tại A

mà AH là đường phân giác

nên AH là đường cao

21 tháng 3 2021

a/ Vì ΔAIB = ΔAIC (cmt)
=> ^BAI = ^CAI (2 góc tương ứng)
Xét ΔAHI và ΔAKI, có:
^BAI = ^CAI (cmt)
AI chung (gt)
^AHI = ^AKI =90 độ (gt)
=> 2 tam giác = nhau
=> AH = AK (2 cạnh tương ứng)
=> tam giác AHK có 2 cạnh bằng nhau

15 tháng 8 2019

A B C M H K E F 1 2 I

a) * Vì tam giác ABC cân tại A nên đường cao đồng thời là đường trung tuyến  ( t/c ) 

=> AM là đường trung tuyến ứng với cạnh BC 

=> M là trung điểm của BC   => MB = MC = 1/2 BC

b)-Vì tam giác ABC cân nên góc B = góc C 

Vì MH vuông góc AB, MJ vuông góc AC nên \(\widehat{MHB}=90^o;\widehat{MKC}=90^o\)

Xét tam giác MHB và tam giác MKC có : 

góc MHB = góc MKC ( =90 độ ) 

MB = MC ( cm ở câu a ) 

góc B = góc C (cmt ) 

Suy ra : \(\Delta MHB=\Delta MKC\) ( cạnh huyền - góc nhọn )

=> MH = MK ( cặp cạnh tương ứng ) 

* Gọi I là giao điểm của AM và HK 

Vì tam giác MHB = tam giác MKC ( cmt ) 

=> BH = CK ( cặp canh t/ư) 

Mà AB = AC ( tam giác ABC cân tại A )

=> AB - BH = AC - CK 

=> AH = AK 

=> Tam giác AHK cân tại A ( d/h ) 

Vì tam giác ABC cân tại A nên đường cao đồng thời là đường phân giác 

=> AM là tia phân giác của góc BAC 

Hay AI là tia phân giác của góc BAC 

- Vì tam giác AHK cân nên phân giác đồng thời là đường cao, đường trung tuyến  (t/c) 

=> AI là đường cao đồng thời là trung tuyến của tam giác AHK 

=> AM vuông góc HK tại I  và I là trung điểm của HK 

=> AM là đường trung trực của HK ( d/h ) 

c ) * Vì MH vuông góc AB tại H, E thuộc MH nên AM vuông góc AB tại H

Mà H là trung điểm EM 

=> AB là đường trung trực EM 

=> AE = AM ( t/c ) 

Tương tự : AC là đường trung trực của MF 

=> AF = AM  (t/c) 

Suy ra : AE = AF ( = AM )

=> Tam giác AEF cân tại A ( d/h ) 

15 tháng 8 2019

Câu d ) Bạn gọi O là giao điểm của EF với AM 

C/m : tam giác AEO = tam giá AFO 

=> EO = OF

Tiếp tục sử dụng tính chất đặc biệt của tam giác cân như mấy câu trên là ra !!

P/s: Mk k giỏi Hình như giải dài dòng, bn thông cảm nhé