Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho M là điểm tùy ý nằm trong tam giác ABC; gọi D, E, F lần lượt là trọng tâm của tam giác ABC, MCA, MAB
CM: ΔDEF đồng dạng ΔABC
a,
Ta có ON // BH ( cùng vuông góc với AC )
OM // AH ( cùng vuông góc với BC )
MN // AB ( MN là đường trung bình của tam giác ABC )
Vậy tam giác OMN đồng dạng với tam giác HAB.
b,
Xét tam giác AHG và MOG có :
\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )
\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )
Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)
Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)
\(\Rightarrow H,G,O\)thẳng hàng
Bạn tự vẽ hình nhé
Bài làm
Gọi D là trung điểm của OC
Vì AD là đường trung truyến của tam giác AOC, mà N là trọng tâm
Nên \(ND=\frac{1}{3}AD\)( t/c đường trung tuyến )
Xét tam giác OBC có BD là đường trung tuyến, mà M là trọng tâm
Nên \(MD=\frac{1}{3}BD\)( t/c đường trung tuyến )
Xét tam giác ADB có\(\frac{ND}{AD}=\frac{MD}{BD}=\frac{MN}{AB}=\frac{1}{3}\)( Định lý Talet )
Bạn làm tương tự đối với 2 cạnh còn lại của tam giác MNP là MP và NP
Ta được \(\frac{MP}{AC}=\frac{1}{3}\) ; \(\frac{NP}{BC}=\frac{1}{\text{3}}\)
Từ đó suy ra \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}=\frac{1}{3}\)
\(\Rightarrow\)Tam giác MNP đồng dạng với ABC
Bạn nhớ soát lại bài. Có thể mình làm chưa đúng. Bạn nhé!