Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\left(x+\sqrt{x^2+2023}\right)\left(y+\sqrt{y^2+2023}\right)=2023\)
Tính (x+y)2023
Help me plsss
Ta có \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\)
\(\Leftrightarrow\dfrac{\left(yz\right)^2+\left(xz\right)^2+\left(xy\right)^2+2xyz}{\left(xyz\right)^2}=1\)
<=> (xy)2 + (yz)2 + (zx)2 + 2xyz = (xyz)2
<=> (xy)2 + (yz)2 + (xz)2 + 2xyz(x + y + z) = (xyz)2
<=> (xy + yz + zx)2 = (xyz)2
<=> \(\left[{}\begin{matrix}xy+yz+zx=xyz\\xy+yz+zx=-xyz\end{matrix}\right.\)
+) Khi xy + yz + zx = -xyz
=> \(\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=-1< 0\left(\text{loại}\right)\)
=> xy + yz + zx = xyz
<=> \(xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=xyz\Leftrightarrow xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-1\right)=0\)
<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
<=> \(\dfrac{x+y}{xy}=\dfrac{-\left(x+y\right)}{\left(x+y+z\right)z}\)
<=> \(\left(x+y\right)\left(\dfrac{1}{xz+yz+z^2}+\dfrac{1}{xy}\right)=0\)
<=> \(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(zx+yz+z^2\right)xy}=0\)
<=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
Khi x = -y => y = 1 => P = 1
Tương tự y = -z ; z = -x được P = 1
Vậy P = 1
Ta có: `a^2+2023=a^2+ab+bc+ca=a(a+b)+c(a+b)=(a+b)(c+a)`
Do vai trò ba biến `a,b,c` như nhau nên ta có: `b^2+2023=(b+c)(a+b);c^2+2023=(c+a)(b+c)`
`=>A=\sqrt(((a+b)(b+c)(c+a))^2)=|(a+b)(b+c)(c+a)|\inQQ`
\(x=\sqrt{\dfrac{2\sqrt{3}+2-6\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2-4\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}\) ko tồn tại vì 2-4căn 3<0
Lời giải:
Áp dụng BĐT AM-GM:
\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\leq \frac{x^2+(2020-y^2)}{2}+\frac{y^2+(2020-z^2)}{2}+\frac{z^2+(2020-x^2)}{2}=3030\)Dấu "=" xảy ra khi:
\(\left\{\begin{matrix} x^2=2020-y^2\\ y^2=2020-z^2\\ z^2=2020-x^2\end{matrix}\right.\Rightarrow x=y=z=\sqrt{1010}\)
Khi đó:
$A=3(\sqrt{1010})^2=3030$
\(\Leftrightarrow\left(\sqrt{x+2022}-\sqrt{y+2022}\right)+\left(x^3-y^3\right)=0\)
=>\(\dfrac{x-y}{\sqrt{x+2022}+\sqrt{y+2022}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
=>x-y=0
=>x=y
P=2x^2-5x^2+x^2+12x+2023
=-2x^2+12x+2023
=-2(x^2-6x-2023/2)
=-2(x^2-6x+9-2041/2)
=-2(x-3)^2+2041<=2041
Dấu = xảy ra khi x=3
Ta có: \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\) (1)
Lại có: \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)
\(=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-2\sqrt{5}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)
\(=2\sqrt{5}+3-2\sqrt{5}\)
\(=3\)
\(\Rightarrow a=b+3\)
Thay \(a=b+3\) vào (1), ta được:
\(\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2024\)
\(=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2024\)
\(=b\left(b^2+6b+9\right)+4\left(b^2+6b+9\right)-b^3-10b^2-33b+2024\)
\(=b^3+6b^2+9b+4b^2+24b+36-b^3-10b^2-33b+2024\)
\(=\left(b^3-b^3\right)+\left(6b^2+4b^2-10b^2\right)+\left(9b+24b-33b\right)+\left(2024+36\right)\)
\(=2060\)
$\Rightarrow$ Chọn đáp án $C$.
Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)
\(\Rightarrow a-b=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)
\(\Rightarrow a-b=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)
\(\Rightarrow a-b=2\sqrt{5}+3-2\sqrt{5}\)
\(\Rightarrow a-b=3\)
Xét biểu thức : \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\)
\(=a^3+a^2-b^3+b^2-11ab+2024\)
\(=a^3-b^3+a^2+b^2-2ab-9ab+2024\)
\(=a^3-b^3-9ab+a^2-2ab+b^2+2024\)
\(=a^3-3ab\left(a-b\right)-b^3+\left(a-b\right)^2+2024\) vì \(a-b=3\)
\(=\left(a-b\right)^3+\left(a-b\right)^2+2024\)
\(=3^3+3^2+2024\)
\(=2060\)
\(\Rightarrow C\)
Để tính (x+y)2023, ta sẽ sử dụng công thức nhân đa thức. Trước tiên, ta mở đuôi công thức:(x+y)2023 = (x+y)(x+y)(x+y)...(x+y)Từ phép nhân đầu tiên, ta có:(x+y)(x+y) = x^2 + 2xy + y^2Tiếp tục nhân với (x+y), ta có:(x^2 + 2xy + y^2)(x+y) = x^3 + 3x^2y + 3xy^2 + y^3Lặp lại quá trình này 2020 lần nữa, ta có:(x^3 + 3x^2y + 3xy^2 + y^3)(x+y) = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4Tiếp tục nhân với (x+y), ta có:(x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4)(x+y) = x^5 + 5x^4y + 10x^3