K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+\sqrt{x^2+1}}=y+\sqrt{y^2+1}\\\frac{1}{y+\sqrt{y^2+1}}=x+\sqrt{x^2+1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+\sqrt{x^2+1}=y+\sqrt{y^2+1}\left(1\right)\\-y+\sqrt{y^2+1}=x+\sqrt{x^2+1}\left(2\right)\end{cases}}\)

Cộng vế với vế của (1) và (2) ta có:

\(-2x-2y=0\Leftrightarrow-2\left(x+y\right)=0\Leftrightarrow x+y=0\)

\(\Rightarrow P=x^{2019}+y^{2019}=0\)

4 tháng 8 2019

Nhân liên hợp cả 2 vế

P=1

5 tháng 2 2020

Có: \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)

\(\Leftrightarrow\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2019\)

\(\Leftrightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow\left[y\left(1+x^2\right)+x\left(1+y^2\right)\right]^2=2018\)

\(\Leftrightarrow y\left(1+x^2\right)+x\left(1+y^2\right)=\sqrt{2018}\)

hay \(A=\sqrt{2018}\)

4 tháng 1 2019

Ta có:

\(VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}\)

\(=xy=VP\)

Dấu =  xảy ra khi \(x=y=18\)

\(\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0\)

20 tháng 9 2019

Ta có:

VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}VT=9x(xy−9x)​+9y(xy−9y)​≤29x+xy−9x​+29y+xy−9y​

=xy=VP=xy=VP

Dấu =  xảy ra khi x=y=18x=y=18

\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0⇒S=(18−17)2018+(18−19)2019=1−1=0

28 tháng 4 2019

Ta xét \(\left(x+\sqrt{x^2+1}\right)\left(x-\sqrt{x^2+1}\right)=x^2-\left(x^2+1\right)=-1.\)

Mà \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Rightarrow x-\sqrt{x^2+1}=-\left(y+\sqrt{y^2+1}\right)\)

\(\Leftrightarrow x+y=\sqrt{x^2+1}-\sqrt{y^2+1}.\)(1)

Xét \(\left(y+\sqrt{y^2+1}\right)\left(y-\sqrt{y^2+1}\right)=y^2-\left(y^2+1\right)=-1\)

Mà \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Rightarrow y-\sqrt{y^2+1}=-\left(x+\sqrt{x^2+1}\right).\)

\(\Leftrightarrow x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\)(2)

Cộng 2 vế của (1) và (2) Ta được

\(2\left(x+y\right)=0\Leftrightarrow x=-y\)Thế vào A

\(A=x^{2019}+y^{2019}=\left(-y\right)^{2019}+y^{2019}=0\)