K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

S o B H A D G d H' C K

Câu a bạn tự tính nhé!

Câu b: Qua G kẻ đường thẳng d // CD , khoảng cách từ \(d\left(G;\left(SAB\right)\right)=d\left(d;\left(SAD\right)\right)\) 

Kẻ HH' vuông CD , nối SH'. Lúc này SH' cách d tại K . \(d\left(K;\left(SAB\right)\right)\) là khoảng cách cần tìm.

Ta có: SH'AB =\(\frac{1}{2}S_{ABCD}\)=\(\frac{1}{2}\times2\sqrt{3}a^2=\sqrt{3}a^2\) \(\Rightarrow HH'=\frac{\sqrt{3}a^2}{a}=\sqrt{3}a\) 

Vì K nằm trên d nên \(d\left(K;\left(SAB\right)\right)=\frac{2}{3}HH'=\frac{2\sqrt{3}a}{3}\)

 

 

15 tháng 2 2018

21 tháng 3 2017

Đáp án D

20 tháng 11 2018

Đáp án C

21 tháng 4 2019

 

 

 

26 tháng 1 2018

15 tháng 8 2017

Chọn B.

 

Gọi M,G lần lượt là trung điểm của BC và trọng tâm G của tam giác ABC.

Do tam giác ABC đều cạnh a nên 

Trong mặt phẳng (AA'M)  kẻ MH ⊥ AA'. Khi đó: 

Vậy MH là đoạn vuông góc chung của AA' và BC nên MH =  a 3 4 .

Trong tam giác AA'G kẻ 

Xét tam giác AA'G vuông tại G ta có: 

Vậy thể tích của khối lăng trụ đã cho là  

 

29 tháng 1 2017

Chọn B

Ta có  A ' G ⊥ A B C nên  A ' G ⊥ B C ;   B C ⊥ A M ⇒ B C ⊥ M A A '

Kẻ  M I ⊥ A A ' ;  B C ⊥ I M  nên  d A A ' ;   B C = I M = a 3 4

Kẻ  G H ⊥ A A ' , ta có