K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Đáp án B

Gọi M là trung điểm BC

Vì các cạnh AA’ = A’B = A’C

    => Hình chiếu của A’ trên (ABC) là tâm đường tròn ngoại tiếp ∆ABC

    => A’M ⊥ (ABC)

Xét ∆A’BC, ta có A'M = a 3

Xét ∆ABC, ta có: AB = AC = a 2

Vậy 

13 tháng 10 2017

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Vì hình chóp A’.ABC có A'A = A'B = A'C và đáy ABC là tam giác đều nên hình chóp A’.ABC đều.

Gọi F là hình chiếu của A’ trên (ABC) nên F là tâm của đáy ABC là tam giác đều do đó F cũng là trọng tâm của tam giác ABC.

Gọi AF cắt BC tại D

Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\)

Mà F là trọng tâm nên \(AF = \frac{2}{3}AD = \frac{{a\sqrt 3 }}{3}\)

Xét tam giác A’AF vuông tại F có

\(A'F = \sqrt {A'{A^2} - A{F^2}}  = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{3}} \)

Diện tích tam giác đều ABC là \(S = \frac{{{a^2}\sqrt 3 }}{4}\)

Thể tích khối lăng trụ là \(V = A'F.S = \sqrt {{b^2} - \frac{{{a^2}}}{3}} .\frac{{{a^2}\sqrt 3 }}{4}\)

20 tháng 7 2018

11 tháng 10 2019

Đáp án A

27 tháng 1 2018

Đáp án A

NV
8 tháng 4 2023

\(A'A\perp\left(ABC\right)\) theo giả thiết \(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và đáy

\(\Rightarrow tan\widehat{A'BA}=2\Rightarrow A'A=AB.tan\widehat{A'BA}=2a\)

a.

Gọi D' là trung điểm B'C' \(\Rightarrow A'D'\perp B'C'\) (đáy là tam giác vuông cân)

\(\Rightarrow A'D'\perp\left(BCC'B'\right)\Rightarrow\widehat{A'BD'}\) là góc giữa A'B và (BCC'B')

\(A'B=\sqrt{AB^2+A'A^2}=a\sqrt{5}\)

\(A'D'=\dfrac{1}{2}B'C'=\dfrac{a\sqrt{2}}{2}\)

\(\Rightarrow sin\widehat{A'BD'}=\dfrac{A'D'}{A'B}=\dfrac{\sqrt{10}}{10}\Rightarrow\widehat{A'BD'}\approx18^026'\)

b.

\(\left\{{}\begin{matrix}A'C'\perp A'B'\left(gt\right)\\A'A\perp\left(A'B'C'\right)\Rightarrow A'A\perp A'C'\end{matrix}\right.\)

\(\Rightarrow A'C'\perp\left(ABB'A'\right)\Rightarrow\widehat{C'BA'}\) là góc giữa C'B và (ABB'A')

\(tan\widehat{C'BA'}=\dfrac{A'C'}{A'B}=\dfrac{a}{a\sqrt{5}}=\dfrac{1}{\sqrt{5}}\)

\(\Rightarrow\widehat{C'BA'}\approx24^06'\)

NV
8 tháng 4 2023

loading...

29 tháng 5 2018

Đáp án A

Kẻ đường cao AH của tam giác ABC khi đó BC ⊥ A'AH, trong  ∆ A'AH kẻ đường cao AK thì

AK(A'BC), ta có: