Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AA'=\dfrac{2a}{\sqrt{3}}\)
\(V=AA'\cdot S_{ABCD}=\dfrac{16a^3}{\sqrt{3}}\)
\(AC=AB\sqrt{2}=4a\)
Áp dụng định lý Pitago:
\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)
\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)
Gọi H là hình chiếu vuông góc của A' lên (ABCD)
Do \(A'A=A'B=A'D\) \(\Rightarrow H\) trùng tâm đường tròn ngoại tiếp tam giác ABD
\(\Rightarrow H\) là trung điểm BD
\(AC=\sqrt{AB^2+AD^2}=2a\)\(\Rightarrow AH=\dfrac{1}{2}AC=a\)
\(\Rightarrow A'H=\sqrt{A'A^2-AH^2}=a\sqrt{3}\)
\(\Rightarrow V=A'H.AB.AD=3a^3\)
Do A' cách đều A; B; C \(\Rightarrow\) hình chiếu vuông góc H của A' lên (ABC) trùng tâm của tam giác ABC
\(\Rightarrow\widehat{A'AH}=60^0\)
\(AH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow AA'=\dfrac{AH}{cos60^0}=\dfrac{2a\sqrt{3}}{3}=BB'=CC'=A'B=A'C\) (do A' cách đều A, B, C nên \(A'A=A'B=A'C\))
Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABC\right)\Rightarrow A'H\perp BC\\AH\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(A'AH\right)\Rightarrow BC\perp AA'\)
\(\Rightarrow BC\perp BB'\Rightarrow B'C'CB\) là hình chữ nhật (hình bình hành có 1 góc vuông)
\(S_{BCC'B'}=BB'.BC=\dfrac{2a^2\sqrt{3}}{3}\)
Gọi M là trung điểm AB \(\Rightarrow A'M=\sqrt{A'A^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{a\sqrt[]{39}}{6}\)
\(S_{A'AB}=\dfrac{1}{2}A'M.AB=\dfrac{a^2\sqrt{39}}{12}\)
\(\Rightarrow S_{xq}=S_{BCC'B'}+4S_{A'AB}=...\)
Gọi O là tâm hình thoi ABCD.
Do ABCD là hình thoi mà \(\widehat{ABC}=60^o\)
⇒ Tam giác ABC đều.
⇒ \(BO=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)
⇒ \(BD=2BO=a\sqrt{3}\)
\(V_{ABCD.A'B'C'D'}=AA'\cdot S_{ABCD}=3a\cdot\dfrac{1}{2}\cdot a\sqrt{3}\cdot a=\dfrac{3a\sqrt{3}}{2}\)