K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 7 2023

Gọi O là tâm hình thoi ABCD.

Do ABCD là hình thoi mà \(\widehat{ABC}=60^o\)

⇒ Tam giác ABC đều. 

⇒ \(BO=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)

⇒ \(BD=2BO=a\sqrt{3}\)

\(V_{ABCD.A'B'C'D'}=AA'\cdot S_{ABCD}=3a\cdot\dfrac{1}{2}\cdot a\sqrt{3}\cdot a=\dfrac{3a\sqrt{3}}{2}\)

20 tháng 10 2021

A B C D A' B' C' D'

\(AA'=\dfrac{2a}{\sqrt{3}}\)

\(V=AA'\cdot S_{ABCD}=\dfrac{16a^3}{\sqrt{3}}\)

NV
31 tháng 8 2021

\(AC=AB\sqrt{2}=4a\)

Áp dụng định lý Pitago:

\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)

\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)

Chọn A

29 tháng 10 2021

mn giúp mk vớiiiiiiiiii

NV
1 tháng 11 2021

Gọi H là hình chiếu vuông góc của A' lên (ABCD)

Do \(A'A=A'B=A'D\) \(\Rightarrow H\) trùng tâm đường tròn ngoại tiếp tam giác ABD

\(\Rightarrow H\) là trung điểm BD

\(AC=\sqrt{AB^2+AD^2}=2a\)\(\Rightarrow AH=\dfrac{1}{2}AC=a\)

\(\Rightarrow A'H=\sqrt{A'A^2-AH^2}=a\sqrt{3}\)

\(\Rightarrow V=A'H.AB.AD=3a^3\)

NV
30 tháng 6 2021

Do A' cách đều A; B; C \(\Rightarrow\) hình chiếu vuông góc H của A' lên (ABC) trùng tâm của tam giác ABC

\(\Rightarrow\widehat{A'AH}=60^0\)

\(AH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow AA'=\dfrac{AH}{cos60^0}=\dfrac{2a\sqrt{3}}{3}=BB'=CC'=A'B=A'C\) (do A' cách đều A, B, C nên \(A'A=A'B=A'C\))

Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABC\right)\Rightarrow A'H\perp BC\\AH\perp BC\end{matrix}\right.\)  \(\Rightarrow BC\perp\left(A'AH\right)\Rightarrow BC\perp AA'\)

\(\Rightarrow BC\perp BB'\Rightarrow B'C'CB\) là hình chữ nhật (hình bình hành có 1 góc vuông)

\(S_{BCC'B'}=BB'.BC=\dfrac{2a^2\sqrt{3}}{3}\)

Gọi M là trung điểm AB \(\Rightarrow A'M=\sqrt{A'A^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{a\sqrt[]{39}}{6}\)

\(S_{A'AB}=\dfrac{1}{2}A'M.AB=\dfrac{a^2\sqrt{39}}{12}\)

\(\Rightarrow S_{xq}=S_{BCC'B'}+4S_{A'AB}=...\)