Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Đáp án A.
Dựng B ' M ⊥ A ' C ' ⇒ B ' M ⊥ A C C ' A '
Dựng M N ⊥ A C ' ⇒ A C ' ⊥ M N B '
Khi đó A B ' C ' ; A C ' A ' ^ = M N B ' ^ = 60 0
Ta có:
B ' M = a 2 2 ⇒ M N = B ' M tan M N B ' ^ = a 6 6
Mặt khác tan A C ' A ' ^ = M N C ' N = AA ' A ' C '
Trong đó:
M N = a 6 6 ; M C ' = a 2 2 ⇒ C ' N = C ' M 2 − M N 2 = a 3 3
Suy ra AA ' = a
Thể tích lăng trụ:
V = A B 2 2 . h = a 3 2 ⇒ V B ' . A C C ' A ' = V − V B ' . B A C = V − V 3 = 2 3 V = a 3 3 .
Đáp án B
Gọi M, N lần lượt là trung điểm của AC và AM.
Khi đó ΔAHM là tam giác đều và NH ⊥ AC .
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b