K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
12 tháng 9 2016
Gọi E là trung điểm BC → AE vuông góc (vg) với BC
mà (ABC) vg (BB'C'C)
→ AE vg (BB'C'C)
\(V_{A.BB'C'C}=\frac{1}{3}\cdot AE\cdot S_{BB'C'C}=\frac{1}{3}\cdot\frac{a\sqrt{3}}{2}\cdot BB'\cdot BC=\frac{a^3\sqrt{3}}{3}\)
Vì SBB'C = 1/2 * SBB'C'C
nên VABB'C' = 1/2 * VA.BB'C'C = (a3căn3)/6
CM
15 tháng 11 2019
Ta chia khối lẳng trụ đã cho thành hình chóp A’.ABC, C.A’B’C’ và C.A’BB’
Ta có: VA’.ABC = VA’B’C’ = trong đó S là diện tích đáy S = SABC = SA’B’C’ và h là chiều cao của hình lăng trụ
Lại có: VABC.A’B’C’ = S.h
Do đó,
Trong đó, tam giác ABC là tam giác đều có độ dài cạnh bằng a nên
Vì đây là hình lăng trụ đứng nên h = AA’ = BB’= CC’ = a.
Vậy thể tích hình chóp C.A’BB’ là:
thể tích lăng trụ = \(\dfrac{a^3\sqrt{3}}{4}\)
thể tích chóp B'ABC = \(\dfrac{a^3\sqrt{3}}{12}\)
thể tích chóp C'A'B'C=\(\dfrac{a^3\sqrt{3}}{12}\) A' A B C C' B'
=> V cần tính bằng \(\dfrac{a^3\sqrt{3}}{4}\) - \(\dfrac{a^3\sqrt{3}}{12}\)-\(\dfrac{a^3\sqrt{3}}{12}\)=\(\dfrac{a^3\sqrt{3}}{12}\)