Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Dễ thấy mệnh đề P: “35 là số có hai chữ số” là mệnh đề đúng nên ta chỉ cần tìm mệnh đề sai trong các đáp án.
Từ các đáp án bài cho ta thấy chỉ có mệnh đề Q: “4 là số nguyên tố” là mệnh đề sai.
Nếu a< b <c thì ( − ∞ ; b ] ∩ ( a ; c ) = ( a ; b ]
Do đó phương án A sai.
Đáp án A
* Mệnh đề C: Nếu a < b ⇒ a 2 < b 2 là đúng.
* Mệnh đề A cần sửa thành: - a b = a . b
* Mệnh đề B cần sửa thành: a b = a - b b ≠ 0
* Mệnh đề D cần sửa thành: a - b ≤ a - b
Với 2 số thực a và b tùy ý, ta luôn có: a + b ≤ a + b
Dấu “=” xảy ra khi a và b cùng dấu.
Câu trắc nghiệm này kinh thật :D
\(P=\left(1+36abc\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+36\left(ab+bc+ca\right)\)
\(P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+36\left(ab+bc+ca\right)\)
\(P=\dfrac{a^2+b^2}{ab}+\dfrac{b^2+c^2}{bc}+\dfrac{c^2+a^2}{ca}+3+36\left(ab+bc+ca\right)\)
\(P=\dfrac{\left(a+b\right)^2}{ab}+\dfrac{\left(b+c\right)^2}{bc}+\dfrac{\left(c+a\right)^2}{ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{\left(2a+2b+2c\right)^2}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{4}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge2\sqrt{\dfrac{144\left(ab+bc+ca\right)}{ab+bc+ca}}-3=21\)
Vậy \(P\ge21\)