K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

Chọn D

Gọi M là trung điểm của BC và H là hình chiếu của A trên A'M.

Ta có :

(do tính chất trọng tâm).

Xét tam giác vuông A'AM :

Suy ra thể tích lăng trụ ABC. A'B'C' là:

16 tháng 7 2017

Chọn D

Diện tích đáy là B = S ∆ A B C = a 2 3 4 .

Chiều cao là h = d((ABC); (A'B'C')) = AA'

Do tam giác ABC là tam giác đều nên O là trọng tâm của tam giác ABC. Gọi I là trung điểm của BC, H là hình chiếu vuông góc của A lên A'I ta có:

Xét tam giác A'AI vuông tại A ta có:

8 tháng 9 2018

Phương pháp:

Thể tích khối lăng trụ: V = Sh

Cách giải:

Gọi I là trung điểm của BC, kẻ AH ⊥ A'I

∆ ABC đều cạnh a 

Ta có: 

Ta có: 

Mà 

Chọn: A

25 tháng 5 2017

Đáp án A.

Từ A dựng A H ⊥ A ' B ( H ∈ A ' B )

⇒ A H = a 3  

1 A H 2 = 1 A A ' 2 + 1 A B 2

⇒ 1 A A ' 2 = 1 3 a 2 - 1 4 a 2 = 1 12 a 2

⇒ A A ' = 2 a 3 ⇒ V = 8 a 3 3  

14 tháng 9 2018

Chọn A

10 tháng 12 2019

Chọn C

 

 

Gọi M là trung điểm của BC 

=> AM  ⊥ BC (1) 

Ta có  B C   ⊥ A M B C   ⊥ A A ' ⇒   B C   ⊥   A ' M   ( 2 )

Mặt khác  A B C   ∩ A ' B C   =   B C   ( 3 )

 

 

 

 

 

27 tháng 9 2017

29 tháng 1 2017

Chọn B

Ta có  A ' G ⊥ A B C nên  A ' G ⊥ B C ;   B C ⊥ A M ⇒ B C ⊥ M A A '

Kẻ  M I ⊥ A A ' ;  B C ⊥ I M  nên  d A A ' ;   B C = I M = a 3 4

Kẻ  G H ⊥ A A ' , ta có 

 

25 tháng 2 2017