Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có: S A B C = 1 2 A B . A C . sin A = a 2 3 4
Gọi M là trung điểm của B ' C ' khi đó
B ' C ' ⊥ A ' M B ' C ' ⊥ A A ' ⇒ B ' C ' ⊥ A ' M A
Suy ra A ' M A ⏜ = A B ' C ' ' A ' B ' C ' ⏜ = 30 °
Lại có A ' M = A ' B sin 30 ° = a 2 ⇒ A A ' = A ' M t a n 30 ° = a 2 3
⇒ V A B C . A ' B ' C ' = S A B C . A A ' = a 3 8
Đáp án D
Phương pháp :
+) Kẻ AD ⊥ B’C, xác định góc giữa mặt phẳng (AB’C) và mặt phẳng (BCC’B’)
+) Tính BB’.
+) Tính thể tích khối lăng trụ và suy ra thế tích AB’CA’C’
Cách giải :
Gọi H là trung điểm của BC ta có
Trong (AB’C) kẻ AD ⊥ B’C
Ta có:
=> ((AB'C);(BCC'B')) = (AD;HD) = ADH
Ta có
Dễ thấy ∆CBB’ đồng dạng với ∆CDH (g.g)
Ta có:
Đáp án D
Phương pháp:
Cách giải:
=> AB’ = AC’ cân tại A
Gọi M là trung điểm của B’C’
Ta có:
=>((AB’C’);(A’B’C’))=(AM;A’M)=AMA’=300
Xét tam giác vuông A’B’M có A'M = A'B'. cos60 = x
Xét tam giác vuông AMA’ có:
Đáp án A
Ta có: A ' A = A B tan 30 ∘ = 3 a . 1 3 = a 3 ; S A B C = 1 2 3 a 2 = 9 a 2 2
Thể tích khối chóp A’.ABC là V = 1 3 A ' A . S A B C = 1 3 a 3 . 9 a 2 2 = 3 3 a 3 2 .
Đáp án A
Ta có
A B = B C = A C 2 = a ⇒ S A B C = a 2 2 ⇒ V = S h = a 3 2
Chọn đáp án B.