Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC
b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM
c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.
Đáp án D.
Phương pháp : Dựng thiết diện, xác định hai phần cần tính thể tích.
Sử dụng phân chia và lắp ghép các khối đa diện.
Cách giải : Gọi E = MN ∩ B'C'
Kéo dài MP cắt AB tại D, cắt AA ‘ tại F.
Nối NF, cắt AC tại G.
Do đó thiết diện của lăng trụ khi cắt bởi mặt phẳng (MNP) là NEPDG.
Gọi V1 là thể tích khối đa diện chứa đỉnh A’ ta có :
Ta có:
=> D là trung điểm của AB
Dễ dàng chứng minh được ∆ADG đồng dạng ∆A’MN theo tỉ số 1 3
Áp dụng định lí Menelaus trong tam giác A’B’C’ ta có:
Áp dụng định lí Menelaus trong tam giác A’MN ta có:
Vậy
=> V 1 V 2 = 49 95