K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Đáp án D

 

Gọi H là trung điểm AB, do tam giác SAB đều nên SA ⊥ AB. Mặt khác mặt phẳng (SAB) vuông góc với mặt đáy nên SH là đường cao của chóp.

Ta có h = S H = a 3 2 , S A B C D = a 2

Vậy  V = 1 3 . a 3 2 . a 2 = a 3 3 6

14 tháng 8 2017

13 tháng 1 2017

29 tháng 4 2018

Đáp án B

Phương pháp:

Xác định góc giữa hai mặt phẳng (α;β)

- Tìm giao tuyến Δ của (α;β)

- Xác định 1 mặt phẳng γ ⊥ Δ

- Tìm các giao tuyến a = α∩γ, b = β ∩ γ

- Góc giữa hai mặt phẳng (α;β):(α;β) = (a;b)

 

Cách giải:

Gọi I, J lần lượt là trung điểm của AB, CD.

Tam giác SAB cân tại S ⇒ SI ⊥ AB

 

Vì mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD) nên SI ⊥ (ABCD)

4 tháng 11 2017

 

26 tháng 4 2018

Đáp án C.

11 tháng 11 2017

Đáp án B

29 tháng 1 2019

Chọn D.

Ta có:  SA=SB=AB=a 3

Gọi H là trung điểm của AB.

Do (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD). Khi đó SH= 3 a 2

Diện tích đáy S A B C D = 3 a 2

Vậy thể tích khối chóp  

V S . A B C D = 1 3 S H . S A B C D = 3 a 2 2

3 tháng 3 2017

NV
1 tháng 9 2021

Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)

\(SH=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{6}}{2}\)

\(V=\dfrac{1}{3}SH.AB^2=\dfrac{1}{3}.\dfrac{a\sqrt{6}}{2}.2a^2=\dfrac{a^3\sqrt{6}}{3}\)