Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Dựng HK ⊥ BD, do SH ⊥ BD nên ta có:
(SKH) ⊥ BD => Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là góc SKH = 600
Lại có:
Do đó
Vậy
Đáp án B.
SH vuông góc với AB tại trung điểm của AB nên ΔSAB cân tại A.
Đáp án C.
Ta có SAD là tam giác đều nên S H ⊥ A D
Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .
Dựng B E ⊥ H C ,
do B E ⊥ S H ⇒ B E ⊥ S H C
Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a
Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .
Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2
suy ra V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H
= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .
Đáp án C
Gọi M là trung điểm cuả AD. Ta có: B C = A M = a và B C / / A M
nên tứ giác ABCM là hình bình hành
⇒ C M = A B = a ⇒ Δ C D M đều. Gọi K là hình chiếu của C lên AD.
Ta có: C K = a 2 − a 2 2 = a 3 2 .
Diện tích hình thang ABCD là: S = a + 2 a . a 3 2 2 = 3 a 2 3 4
+) Lại có:
H D = 3 2 .2 a = 3 a 2 ⇒ S H = 3 a 2
Thể tích khối chóp S.ABCD là:
V = 1 3 S H . S A B C D = 1 3 . 3 a 2 . 3 a 2 3 4 = 3 a 3 3 8 .