Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn: B
Gọi M là trung điểm củaCD, O là giao điểm của AC và BD. Ta có:
a)
Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)
\( \Rightarrow \) O là hình chiếu của S trên (ABCD)
C là hình chiếu của C trên (ABCD)
\( \Rightarrow \) OC là hình chiếu của SC trên (ABCD)
\( \Rightarrow \) (SC, (ABCD)) = (SC, OC) \( = \widehat {SCO}\)
Mà cạnh bên tạo với mặt đáy một góc bằng \({60^0}.\)
\( \Rightarrow \widehat {SCO} = {60^0}\)
Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{6^2} + {6^2}} = 6\sqrt 2 \left( {cm} \right)\)
\( \Rightarrow OC = \frac{{AC}}{2} = \frac{{6\sqrt 2 }}{2} = 3\sqrt 2 \left( {cm} \right)\)
Xét tam giác SOC vuông tại O có
\(\tan \widehat {SCO} = \frac{{SO}}{{OC}} \Rightarrow SO = 6\sqrt 2 .\tan {60^0} = 6\sqrt 6 \left( {cm} \right)\)
\({S_{ABCD}} = {6^2} = 36\left( {c{m^2}} \right)\)
Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.6\sqrt 6 .36 = 72\sqrt 6 \left( {c{m^3}} \right)\)
b)
Trong (ABCD) kẻ \(OE \bot CD\)
\(\begin{array}{l}SO \bot CD\left( {SO \bot \left( {ABCD} \right)} \right)\\ \Rightarrow CD \bot \left( {SOE} \right),SE \subset \left( {SOE} \right) \Rightarrow CD \bot SE,OE \bot CD,\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\ \Rightarrow \left( {\left( {SCD} \right),\left( {ABCD} \right)} \right) = \left( {SE,OE} \right) = \widehat {SEO}\end{array}\)
Mà mặt bên tạo với mặt đáy một góc bằng \({45^0}.\)
\( \Rightarrow \widehat {SEO} = {45^0}\)
Ta có \(\left. \begin{array}{l}OE \bot CD\\AD \bot CD\end{array} \right\} \Rightarrow OE//AD\) mà O là trung điểm AC nên OE là đường trung bình tam giác ACD.
\( \Rightarrow OE = \frac{{AD}}{2} = \frac{6}{2} = 3\left( {cm} \right)\)
Xét tam giác SOE vuông tại O có
\(\tan \widehat {SEO} = \frac{{SO}}{{OE}} \Rightarrow SO = 3.\tan {45^0} = 3\left( {cm} \right)\)
Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.3.36 = 36\left( {c{m^3}} \right)\)
Kẻ SG vuông góc (ABC)
S.ABC là khối chóp đều
=>ΔABC đều
=>G là trọng tâm, là trực tâm của ΔABC
Gọi giao của AG với BC là D
=>D là trung điểm của BC
ΔABC đều có AD là trung tuyến
nên \(AD=\dfrac{a\sqrt{3}}{2}\)
=>\(AG=\dfrac{a\sqrt{3}}{2}\cdot\dfrac{2}{3}=\dfrac{a\sqrt{3}}{3}\)
ΔSAG vuông tại G nên \(SG=\sqrt{SA^2-AG^2}=\sqrt{b^2-\dfrac{1}{3}a^2}\)
\(V_{S.ABC}=\dfrac{1}{3}\cdot S_{ABC}\cdot SG=\dfrac{1}{3}\cdot\sqrt{b^2-\dfrac{1}{3}a^2}\cdot\dfrac{a^2\sqrt{3}}{4}\)
\(=\dfrac{a^2\sqrt{3}}{12}\cdot\sqrt{\dfrac{3b^2-a^2}{3}}\)
Thể tích khối tứ diện đều có cạnh bằng a là:
\(V=\dfrac{a^2\sqrt{3}}{12}\cdot\sqrt{a^2-\dfrac{a^2}{3}}=\dfrac{a^3\sqrt{2}}{12}\)
Đáp án D.
Gọi O là tâm của hình vuông ABCD.vì S.ABCD là hình chop đều nên SO ⊥ (ABCD)
Từ giả thiết, ta có
Khối nón ngoại tiếp hình chóp S.ABCD có chiều cao
và bán kính đáy là
và bán kính đáy là
Suy ra
Ta có SO là trục đường tròn ngoại tiếp hình vuông ABCD. Đường trung trực của SB nằm trong mặt phẳng (SBD) cắt SB, SO lần lượt tại M, I. Ta có IS = IB = IA = IC = ID nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.
Ta có SI.SO = SM.SB
Suy ra
Do đó V 1 V 2 = 108 25
Phân tích phương án nhiễu.
Phương án A: Sai do HS nhớ nhầm công thức tính thể tích khối cầu là
Do đó tính được V 1 V 2 = 324 25
Phương án B: Sai do HS nhớ nhầm công thức tính thể tích khối nón là
Do đó tính được V 1 V 2 = 18 30 25
Phương án C: Sai do HS nhớ sai công thức tính thể tích khối nón là
Do đó tính được V 1 V 2 = 36 25
Gọi G là trọng tâm đáy \(\Rightarrow SG\perp\left(ABC\right)\)
Gọi M là trung điểm BC \(\Rightarrow AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)
Theo tính chất trọng tâm tam giác: \(AG=\dfrac{2}{3}AM=\dfrac{a\sqrt{3}}{3}\)
Pitago tam giác vuông SAG:
\(SG=\sqrt{SA^2-AG^2}=\sqrt{b^2-\dfrac{a^2}{3}}\)
\(\Rightarrow V=\dfrac{1}{3}SG.S_{ABC}=\dfrac{1}{3}\sqrt{b^2-\dfrac{a^2}{3}}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{12}.\sqrt{b^2-\dfrac{a^2}{4}}\)
Đáp án D
Gọi O là giao AC và BD, M là trung điểm CD
Vì S.ABCD là hình chóp đều
=> O là hình chiếu của S trên (ABCD)
Ta có: OM ⊥ CD và SM ⊥ CD
Vậy
Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)
Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
\( \Rightarrow OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)
Xét tam giác SAO vuông tại O có
\(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{2}} = \frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}\)
\({S_{ABCD}} = {a^2}\)
Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.\frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}.{a^2} = \frac{{{a^2}\sqrt {4{b^2} - 2{a^2}} }}{6}\)