Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chia hết cho 72 là chia hết cho 9 và 8.
Ta có 1028 + 8 = 100...0 (28 chữ số 0) + 8 có tổng các chữ số là 1 + 0 + ... +0 + 8 = 9 chia hết cho 9.
1028 + 8 có 3 chữ số tận cùng là 008 chia hết cho 8.
=> 1028 + 8 chia hết cho 72
Lời giải:
$10^{28}+8=2^{28}.5^{28}+8=2^3.2^{25}.5^{28}+8=8.2^{25}.5^{28}+8$
$=8(2^{25}.5^{28}+1)\vdots 8(1)$
$10^{28}+8\equiv 1^{28}+8\equiv 1+8\equiv 9\equiv 0\pmod 9$
$\Rightarrow 10^{28}+8\vdots 9(2)$
Từ $(1); (2)\Rightarrow 10^{28}+8\vdots (8.9)$ hay $10^{28}+8\vdots 72$.
72=9.8
1028+8=1000000000000..00000( có 28 số 0 ) +8
= 100000000...008 có 27 số 0
có tận cùng là 008 nên chia hết cho 8
1+0+0+0+...+0+0+8=9 tổng bằng 9 nên chia hết cho 9
vậy 1028+8 chia hết cho 9 và 8 => 1028+8 chia hết cho 72
de 1028 + 8 chia het cho 72 nen 1028 + 8 chia het cho 9;8
ta co : 1028 + 8 =1000...00 ( 28 chu so 0 ) + 8
co ba chu so tan cung la 008 chia het cho 8 nen 1028 + 8 chia het cho 8
vi 1028+ 8 co tong cac chu so chia het cho 9 nen 1028 + 8 chia het cho 9
vi 1028 + 8 chia het cho 9;8 nen 1028 + 8 chia het cho 72
Ta có:
A=1028+8=(2.5)28+8=228.528+8=23.225.528+8=8.(225.528+1)
=> A chia hết cho 8. (1)
Lại có:
A=1028+8=100...008 (27 chữ số 0)
Tổng các số hạng của A là: 1+27.0+8=9
=> A chia hết cho 9 (2)
Từ (1) và (2) suy ra: A chia hết cho 8.9=72
CMR:
a) F= 10^28+8 chia hết cho 72.
b) J= 10^n+18n-1 chia hết cho 27.
c) K= 10^n+72n-1 chia hết cho 81.
a) Ta có :
\(72=8.9\)
Ta thấy :
\(10^{28}⋮8\)
\(8⋮8\)
\(\Rightarrow10^{28}+8⋮8\)
Tổng các chữ số của \(10^{28}=1\)
Tổng các chữ số của \(8=8\)
\(\Rightarrow\)Tổng các chữ số của \(10^{28}+8=1+8=9⋮9\)
\(\Rightarrow10^{28}⋮8;9\)
\(\Rightarrow10^{28}⋮72\)
\(\Rightarrow F⋮72\left(đpcm\right)\)
b) Ta có :
\(10^n+18n-1=10^n-1+18n=999...9\)( n chữ số 9 ) \(+18n\)
\(=9\left(111....1+2n\right)\)( n chữ số 1 )
Xét \(111...1+2n=111...1-n+3n\)
Dễ thấy tổng các chữ số của \(111...1\)là n
\(\Rightarrow111...1-n⋮3\)
\(\Rightarrow111...1-n+3n⋮3\)
\(\Rightarrow10^n+18n-1⋮27\)
\(\Rightarrow J⋮27\left(đpcm\right)\)
c) Ta có :
\(K=10^n+72n-1=10^n-1+72n\)
\(10^n-1=999...9\)( n - 1 chữ số 9 )
\(=9\left(111...1\right)\)( n chữ số 1 )
\(K=10^n-1+72n=9\left(111...1\right)+72n\)
\(\Rightarrow K:9=111...1+8n=111...1-n+9n\)
Ta thấy :
\(111...1\)( n chữ số 1 ) có tổng các chữ số là n
\(\Rightarrow111...1-n⋮9\)
\(\Rightarrow K:9=111...1-n+9n⋮9\)
\(\Rightarrow K⋮81\left(đpcm\right)\)
Ta có : 72 = 8 . 9
Để 1028 + 8 chia hết cho 72 thì 1028 + 8 chia hết cho 8 và 9
Lại có : 1028 + 8 = 100......00 + 8 = 100......08 ( có 26 chữ số 0)
Vì 100.....08 có tổng số chữ số là 9 chia hết cho 9 nên 100.....08 chia hết cho 9 hay 1028 + 8 chia hết cho 9 (1)
Mà 100.....08 có 3 c/s tận cùng là 008 chia hết cho 8 nên 100......08 chia hết cho 8 hay 1028 + 8 chia hết cho 8 (2)
Từ (1) và (2) mà (8,9) = 1 nên 1028 + 8 chia hết cho 72 (Điều phải chứng tỏ)
Ủng hộ mk nha cảm ơn nhìu!!!
ta có 10 ^ 28 + 8 chia hết cho 72 \(\Leftrightarrow\)10 ^ 28 + 8 chia hết cho 8 và 9
vì ba chữ số tận cùng chia hết nên 008 chia hết cho 8
vì tổng các chữ số cộng lại sẽ chia hết cho 9 nên 10 ^ 28 + 8 có tổng bằng 9 nên chia hết cho 9
Vậy 10^28+8 chia hết cho 72
(BÀI ĐÂY ĐÚNG VÌ THẦY GIÁO MÌNH GIẢI CHO MÌNH RỒI)