Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, hình vuông có thể là hcn mà bn vì nó đều có 4 góc bằng nhau và 2 cạnh đối song song bằng nhau
1: Xét tứ giác ABCD có
góc BAD=góc ABC=góc BCD=90 độ
=>ABCD là hình chữ nhật
1:
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
Suy ra: BM//DN
Câu hỏi của pham trung thanh - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại link trên nhé.
a: Xét ΔAED vuông tại A và ΔHAD vuông tại H có
góc D chung
=>ΔAED đồng dạng với ΔHAD
=>AE/AH=AD/DH
=>AE*DH=AH*AD
b: AH/AE=DH/AD
=>AH/AE=DH/DC
=>AH/DH=AF/DC
=>ΔAHF đồng dạng với ΔDHC
\(a)\) Xét tam giác vuông ADM và tam giác vuông BAF có :
\(AD=AB\) ( do ABCD là hình vuông )
\(\widehat{DAM}=\widehat{ABF}\) \(\left(=90^0-\widehat{BAF}\right)\)
Do đó : \(\Delta ADM=\Delta BAF\) ( cạnh góc vuông - góc nhọn )
Suy ra : \(DM=AF\) ( 2 cạnh tương ứng )
Mà \(AE=AF\)(GT) \(\Rightarrow\)\(DM=AE\)
Tứ giác AEMD có : \(DM=AE\)\(;\)\(DM//AE\) ( do \(AB//CD\) ) và có \(\widehat{ADC}=90^0\) nên AEMD là hình chữ nhật
Vậy AEMD là hình chữ nhật
\(b)\) Xét \(\Delta HAB\) và \(\Delta HFA\) có :
\(\widehat{ABH}=\widehat{FAH}\) ( do \(\widehat{ABF}=\widehat{DAM}\) theo câu a ) *(góc DÂM -_- haha)*
\(\widehat{BHA}=\widehat{AHF}\) \(\left(=90^0\right)\)
Do đó : \(\Delta HAB~\Delta HFA\) \(\left(g-g\right)\)
Suy ra : \(\frac{HB}{AH}=\frac{AB}{AF}\) ( các cặp cạnh tương ứng tỉ lệ )
Mà \(AB=BC;AF=AE\left(=DM\right)\) nên \(\frac{HB}{AH}=\frac{BC}{AE}\)
Lại có : \(\widehat{HAB}=90^0-\widehat{FAH}=90^0-\widehat{ABH}=\widehat{HBC}\)\(\Rightarrow\)\(\widehat{HAB}=\widehat{HBC}\)
Xét \(\Delta CBH\) và \(\Delta EAH\) có :
\(\frac{HB}{AH}=\frac{BC}{AE}\)
\(\widehat{HAB}=\widehat{HBC}\)
Do đó : \(\Delta CBH~\Delta EAH\) \(\left(c-g-c\right)\)
Vậy \(\Delta CBH~\Delta EAH\)
\(c)\) \(\Delta ADM\) có \(CN//AD\) và cắt \(AM;DM\) nên theo hệ quả định lý Ta-let ta có :
\(\frac{CN}{AD}=\frac{MN}{AM}\)\(\Leftrightarrow\)\(\frac{AD}{AM}=\frac{CN}{MN}\)\(\Leftrightarrow\)\(\frac{AD^2}{AM^2}=\frac{CN^2}{MN^2}\) \(\left(1\right)\)
\(\Delta ABN\) có \(CM//AB\) và cắt \(AN;BN\) nên theo hệ quả định lý Ta-let ta có :
\(\frac{MN}{AN}=\frac{MC}{AB}\) hay \(\frac{MN}{AN}=\frac{MC}{AD}\)\(\Leftrightarrow\)\(\frac{AD}{AN}=\frac{MC}{MN}\)\(\Leftrightarrow\)\(\frac{AD^2}{AN^2}=\frac{MC^2}{MN^2}\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{AD^2}{AM^2}+\frac{AD^2}{AN^2}=AD^2\left(\frac{1}{AM^2}+\frac{1}{AN^2}\right)=\frac{CN^2}{MN^2}+\frac{MC^2}{MN^2}=\frac{CN^2+MC^2}{MN^2}=\frac{MN^2}{MN^2}=1\)
\(\Rightarrow\)\(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AD^2}\) ( đpcm )
Vậy \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
mk bổ sung câu hỏi là: tính số đo góc EHC
ê không có điều phải chứng minh à