Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lấy (1) + 2.(2)
sẽ có x = 2m-1
thay vào (1) sẽ ra y = 2-m
thay x và y vừa tìm được vào phần thỏa mãn sẽ có 2 nghiệm m = -1 hoặc m = \(\dfrac{3}{2}\) rồi thay vào tìm x và y theo 2 trường hợp
trường hợp 1: m = -1
thì ta tìm được x = -3 và y = 3
trường hợp 2: m= \(\dfrac{3}{2}\)
x = 2
y = \(\dfrac{1}{2}\)
( mình chỉ bạn cách làm thôi nên hk có trình bày rõ bạn trình bày lại nhé)
\(\left\{{}\begin{matrix}5x=5m\\y=2x-m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=10-m+1=11-m\end{matrix}\right.\)
Thay vào ta đc
\(2m^2-3\left(11-m\right)=2\Leftrightarrow2m^2-33+3m=2\Leftrightarrow2m^2+3m-35=0\Leftrightarrow m=\dfrac{7}{2};m=-5\)
Lời giải:
Cộng 2 pt theo vế có:
$3x=3m+3\Rightarrow x=m+1$
$y=x-(2m+1)=m+1-(2m+1)=-m$
Khi đó:
$(x+1)(y-3)<0$
$\Leftrightarrow (m+1+1)(-m-3)<0$
$\Leftrightarrow (m+2)(m+3)>0$
$\Leftrightarrow m>-2$ hoặc $m<-3$
\(\left\{{}\begin{matrix}2x+y=3m-1\\x-2y=-m-3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\\dfrac{3m-1-y}{2}-2y=-m-3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\3m-1-y-4y=-2m-6\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\5y=5m+5\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\y=m+1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-m-1}{2}\\y=m+1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m-1\\y=m+1\end{matrix}\right.\)
Vậy hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m-1\\y=m+1\end{matrix}\right.\)
Ta có: y = x2 \(\Leftrightarrow\) m + 1 = (m - 1)2 \(\Leftrightarrow\) m + 1 = m2 - 2m + 1
\(\Leftrightarrow\) m2 - 3m = 0
\(\Leftrightarrow\) m(m - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=0\\m-3=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)
Vậy m = 0; m = 3 thì hpt trên có nghiệm duy nhất và thỏa mãn y = x2
Chúc bn học tốt!
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}x=3m-my\\mx-y=m^2-2\end{matrix}\right.\)
\(\Rightarrow m\left(3m-my\right)-y=m^2-2\)
\(\Leftrightarrow2m^2+2=y\left(1+m^2\right)\)
\(\Leftrightarrow y=\dfrac{2m^2+2}{1+m^2}=2\)
\(\Rightarrow x=3m-2m=m\)
Có \(x^2-2x-y>0\Leftrightarrow m^2-2m-2>0\)
\(\Leftrightarrow\left(m-1-\sqrt{3}\right)\left(m-1+\sqrt{3}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1+\sqrt{3}\\m< 1-\sqrt{3}\end{matrix}\right.\)
Vậy...
a)
Khi m = 1, ta có:
{ x+2y=1+3
2x-3y=1
=> { x+2y=4
2x-3y=1
=> { 2x+4y=8
2x-3y=1
=> { x+2y=4
2x-3y-2x-4y=1-8
=> { x=4-2y
-7y = -7
=> { x = 2
y = 1
Vậy khi m = 1 thì hệ phương trình có cặp nghệm
(x; y) = (2;1)
a) Thay m=1 vào HPT ta có:
\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+4y=8\\7y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy HPT có nghiệm (x;y)= (2;1)
a) Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=7\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=4-2y=4-2=2\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(2;1)
b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2\left(m+3-2y\right)-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2m+6-4y-3y-m=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y+m+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y=-m-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2\cdot\dfrac{m+6}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-\dfrac{2m+12}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3 thì \(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=3\)
\(\Leftrightarrow6m+15=21\)
\(\Leftrightarrow6m=6\)
hay m=1
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3
a/ Thay \(m=1\) vào hpt ta có :
\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy...
b/ Ta có :
\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{2\left(m+3\right)}{2y}-3y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{m+3}{y}-3y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\m-3y^2+3=my\end{matrix}\right.\)
=>2x-4y=8m-10 và 2x+y=3m
=>-5y=5m-10 và 2x+y=3m
=>y=-m+2 và 2x=3m+m-2=4m-2
=>y=-m+2 và x=2m-1
2/x-1/y=-1
=>\(\dfrac{2}{2m-1}+\dfrac{1}{m-2}=-1\)
=>\(\dfrac{2m-4+2m-1}{\left(m-2\right)\left(2m-1\right)}=-1\)
=>-(2m^2-m-4m+2)=4m-5
=>2m^2-5m+2=-4m+5
=>2m^2+m-3=0
=>(2m+3)(m-1)=0
=>m=1 hoặc m=-3/2