Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n_{CO}=a\left(mol\right),n_{CO_2}=b\left(mol\right)\)
\(n_B=a+b=0.5\left(mol\right)\)
\(m_B=20.4\cdot2\cdot0.5=20.4\left(g\right)\)
\(\Leftrightarrow28a+44b=20.4\)
\(KĐ:a=0.1,b=0.4\)
\(n_{CO\left(pư\right)}=n_{CO_2}=0.4\left(mol\right)\)
\(BTKL:\)
\(m=0.4\cdot44+64-0.4\cdot28=70.4\left(g\right)\)
a)
CnH2n-2 + H2 --to,Ni--> CnH2n
CnH2n + H2 --to,Ni--> CnH2n+2
CnH2n-2 + 2H2 --to,Ni--> CnH2n+2
b)
Có: mX = mY (Theo ĐLBTKL)
\(d_{Y/X}=\dfrac{M_Y}{M_X}=\dfrac{\dfrac{m_Y}{n_Y}}{\dfrac{m_X}{n_X}}=\dfrac{20}{9}\)
=> \(\dfrac{n_X}{n_Y}=\dfrac{20}{9}\)
Giả sử nX = 20(mol); nY = 9(mol)
nH2(pư) = 20 - 9 = 11 (mol)
\(m_X=7,8.2.20=312\left(g\right)\)
Gọi \(\left\{{}\begin{matrix}n_{H_2}=a\left(a\ge11\right)\\n_{C_nH_n}=b\left(mol\right)\\n_{C_nH_{2n-2}}=c\left(mol\right)\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a+b+c=20\left(1\right)\\2a+14bn+14cn-2c=312\left(2\right)\end{matrix}\right.\)
- Nếu H2 phản ứng hết => a = 11
=> \(\left\{{}\begin{matrix}b+c=9\\14bn+14cn-2c=290\end{matrix}\right.\)
=> 126n = 290 + 2c
Mà c > 0 => n > 2,3
c < 9 => n < 2,4
=> 2,3 < n < 2,4 (vô lí)
=> H2 dư
* Sơ đồ:
\(X\left\{{}\begin{matrix}H_2:a\left(mol\right)\\C_nH_{2n}:b\left(mol\right)\\C_nH_{2n-2}:c\left(mol\right)\end{matrix}\right.\underrightarrow{t^o,Ni}Y\left\{{}\begin{matrix}H_2:a-11\left(mol\right)\\C_nH_{2n+2}:b+c\left(mol\right)\end{matrix}\right.\)
Bảo toàn H: 2a + 2bn + 2cn - 2c = 2a - 22 + 2bn + 2b + 2cn + 2c
=> 2b + 4c = 22
=> b + 2c = 11 (3)
Lấy (1) - (3) => a - c = 9
=> 2a - 2c = 18
Thay vào (2):
14bn + 14cn = 294
=> bn + cn = 21
=> \(n\left(b+c\right)=21\)
=> \(n\left(b+\dfrac{11-b}{2}\right)=21\)
=> \(n.\dfrac{11+b}{2}=21\)
=> \(n=\dfrac{42}{11+b}\)
Mà b > 0 => n < 3,8
b < 11 => n > 1,9
=> 1,9 < n < 3,8
=> n = 2 hoặc n = 3
TH1: n = 2
Có: \(\left\{{}\begin{matrix}b+2c=11\\2b+2c=21\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}b=10\\c=0,5\end{matrix}\right.\)
=> a = 9,5 (mol) => Loại do a \(\ge11\)
TH2: n = 3
Có: \(\left\{{}\begin{matrix}b+2c=11\\3b+3c=21\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}b=3\\c=4\end{matrix}\right.\)
=> a = 13 (Thỏa mãn)
Vậy CnH2n, CnH2n-2 lần lượt là C3H6, C3H4
CTCT:
C3H6: \(CH_2=CH-CH_3\)
C3H4: \(CH\equiv C-CH_3\)
X\(\left\{{}\begin{matrix}\%V_{H_2}=\dfrac{13}{20}.100\%=65\%\\\%V_{C_3H_6}=\dfrac{3}{20}.100\%=15\%\\\%V_{C_3H_4}=\dfrac{4}{20}.100\%=20\%\end{matrix}\right.\)
5.
\(n_X=\dfrac{2,24}{22,4}=0,1mol\\ M_X=2,125.4=8,5g\cdot mol^{^{ }-1}\\ n_{H_2}=a;n_{C_2H_4}=b\\ a+b=0,1\\ 2a+28b=8,5.0,1=0,85\\ a=0,075;b=0,025\\ H_2+C_2H_4-^{^{ }Ni,t^{^{ }0}}->C_2H_6\\ V_{C_2H_6}=0,025.22,4=0,56L;V_{H_2dư}=22,4\left(0,075-0,025\right)=1,12L\)
6.
Thu được Y chỉ gồm hydrocarbon nên khí hydrogen phản ứng hết.
\(n_A=\dfrac{4,48}{22,4}=0,2mol\\ n_Y=\dfrac{3,36}{22,4}=0,15mol\\ \Delta n_{hh}=n_{H_2\left(pư\right)}=0,05\left(mol\right)\\ n_{C_2H_4}=0,15\left(mol\right)\\ a.\%V_{H_2}=\dfrac{0,05}{0,2}=25\%\\ \%V_{C_2H_4}=75\%\\ b.BTLK\pi:0,15=0,05+n_{Br_2}\\ n_{Br_2}=0,1mol\)
PT: \(2Na+2H_2O\rightarrow2NaOH+H_2\)
\(Ba+2H_2O\rightarrow Ba\left(OH\right)_2+H_2\)
Ta có: 23nNa + 137nBa = 18,3 (1)
\(n_{H_2}=\dfrac{4,48}{22,4}=0,2\left(mol\right)\)
Theo PT: \(n_{H_2}=\dfrac{1}{2}n_{Na}+n_{Ba}=0,2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}n_{Na}=0,2\left(mol\right)\\n_{Ba}=0,1\left(mol\right)\end{matrix}\right.\)
Theo PT: \(\left\{{}\begin{matrix}n_{NaOH}=n_{Na}=0,2\left(mol\right)\\n_{Ba\left(OH\right)_2}=n_{Ba}=0,1\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}C_{M_{NaOH}}=\dfrac{0,2}{0,2}=1\left(M\right)\\C_{M_{Ba\left(OH\right)_2}}=\dfrac{0,1}{0,2}=0,5\left(M\right)\end{matrix}\right.\)
C+H2O−t0−>CO+H2
C+2H2O−t0>CO2+2H2
mX=11,2:22,4.7,8.2=7,8g
nCO=a;nCO2=b⇒nH2=a+2b(mol)
nX=0,5=a+b+a+2b=2a+3b=0,5(I)
mX=28a+44b+2a+4b=30a+48b=7,8(II)
(I)(II)⇒a=0,1=b
nCO=nCO2=0,1mol
nH2=0,3mol