Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M N P K E F 1 1 1
mk chỉ nêu hướng giải còn bn tự trình bày nha
a,Ta có MN=3cm ,MP=4cm
=>NP=5cm
Ta có MN2=NK.NP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG )
=>NK=32:5=1,8cm
T2 BN TÍNH ĐC KP
Lại có MK2=NK.KP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG)
=>MK=2,4cm
Lại có MK2=MF.MP
=>MF=1,44cm
b, bn C/m MEKF là hcn =>\(\widehat{M_1}=\widehat{E_1}\)
Ta có \(\widehat{M_1}+\widehat{N}=90^O,\widehat{M_1}=\widehat{E_1}\)
=> \(\widehat{E_1}+\widehat{N}=90^O\)
Lại có \(\widehat{E_1}+\widehat{F_1}=90^O\)
\(\Rightarrow\widehat{F_1}=\widehat{N}\)=> \(\Delta EFM\)ĐỒNG DẠNG VS\(\Delta PNM\)(dpcm)
tk mk nha
chúc bn học giỏi
`a)` Biết `MN=7cm;NP=25cm`
Xét \(\Delta MNP\) vuông tại `M`, đường cao `MK`
Ta có: \(NP^2=MN^2+MP^2\) (đl Pytago)
\(\Rightarrow25^2=7^2+MP^2\\ \Rightarrow MP^2=25^2-7^2=576\\ \Rightarrow MP=\sqrt{576}=24cm\)
Ta có: \(\dfrac{1}{MK^2}=\dfrac{1}{MN^2}+\dfrac{1}{MP^2}\left(htl\right)\)
\(\Rightarrow\dfrac{1}{MK^2}=\dfrac{1}{7^2}+\dfrac{1}{24^2}\\ \Rightarrow\dfrac{1}{MK^2}=\dfrac{625}{28224}\\ \Rightarrow MK^2=\dfrac{1\cdot28224}{625}\\ \Rightarrow MK=\sqrt{\dfrac{28224}{625}}\\ \Rightarrow MK=6,72cm\)
Ta có: \(MN^2=NK\cdot NP\left(htl\right)\)
\(\Rightarrow7^2=NK\cdot25\\ \Rightarrow NK=\dfrac{7^2}{25}=1,96cm\)
Vậy: \(MP=24cm;MK=6,72cm;NK=1,96cm\)
`b)` \(C/m:MD\cdot MN=ME\cdot MP\)
Xét \(\Delta KMN\) vuông tại `K`
Ta có: \(MK^2=MD\cdot MN\left(htl\right)\left(1\right)\)
Xét \(\Delta KMP\) vuông tại `K`
Ta có: \(MK^2=ME\cdot MP\left(htl\right)\left(2\right)\)
Từ `(1)` và `(2)` \(\Rightarrow MK^2=MK^2\)
\(\Rightarrow MD\cdot MN=ME\cdot MP\left(=MK^2\right)\)
(Câu `c)` tớ chịu :v).
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{144}{13}\left(cm\right)\\AH=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)
BAN TU VE HINH NHA
a, trong tam giác MNK có \(\sin N=\frac{4}{5}\Rightarrow GOCN\approx53\)
ap dung dl pitago vao tam giac vuong MNK co \(NK^2+MK^2=NM^2\Rightarrow NK^2=5^2-4^2=3^2\Rightarrow NK=3\)
B, ap dung he thuc luong vao tam giac vuong MNK co \(MK^2=MC\cdot MN\)
tam giac vuong MKP co\(MK^2=MD\cdot MP\)
tu day suy ra MC*MN=MD*MP
C, ta co \(NP=NK+KP\)
ma \(NK=MK\cdot cotN\) \(KP=MK\cdot cotP\)
suy ra \(NP=MK\cdot\left(cotN+cotP\right)\)
D, ta co trong tam giac vuong MDK \(MD=MK\cdot cosM=4\cdot cos30=2\sqrt{3}\)
ma trong tam giac vuong MKP c o\(MK^2=MD\cdot MP\Rightarrow MP=\frac{4^2}{2\sqrt{3}}=\frac{8\sqrt{3}}{3}\)
lai co \(MD+DP=MP\Rightarrow DP=\frac{2\sqrt{3}}{3}\)
Áp dụng hệ thức trong tam giác vuông có:
\(MP^2=PK.PN\Leftrightarrow PN=12,5\left(cm\right)\)
\(MN=\sqrt{PN^2-MP^2}=7,5cm\)
\(MN^2=NK.NP\Leftrightarrow NK=4,5\left(cm\right)\)
\(MK^2=KN.KP=4,5.8=36\Leftrightarrow MK=6\left(cm\right)\)
Vậy...
NP=MP^2/PN=10^2/8=12,5cm
MK=căn 10^2-8^2=6cm
NK=6^2/8=4,5cm
MN=căn 12,5^2-10^2=7,5cm
Ta có: MNPQ là hình vuông(gt)
⇔MN=MQ=QP=NP
mà MN=5cm
nên MQ=QP=5cm
Áp dụng định lí pytago vào ΔMQP vuông tại Q, ta được:
\(MP^2=MQ^2+QP^2\)
\(\Leftrightarrow MP^2=5^2+5^2=50\)
\(\Leftrightarrow MP=\sqrt{50}=5\sqrt{2}cm\)
Ta có: ΔMQP cân tại Q(MQ=PQ)
mà QK là đường cao ứng với cạnh đáy MP(gt)
nên QK là đường trung tuyến ứng với cạnh đáy MP(định lí tam giác cân)
⇒K là trung điểm của MP
⇒\(MK=PK=\frac{MP}{2}=\frac{5\sqrt{2}}{2}=\frac{5}{\sqrt{2}}cm\)
Ta có: ΔMQP vuông tại Q(MQ⊥QP)
mà QK là đường trung tuyến ứng với cạnh huyền MP(gt)
nên \(QK=\frac{MP}{2}\)(định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
⇒\(QK=\frac{5\sqrt{2}}{2}=\frac{5}{\sqrt{2}}cm\)
Vậy: \(MK=\frac{5}{\sqrt{2}}cm\); \(KP=\frac{5}{\sqrt{2}}cm\); \(QK=\frac{5}{\sqrt{2}}cm\)