K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đường tròn tâm O đường kính AB=2R. Cho C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE=AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại đường tròn tại điểm thứ hai là D. Tia AC và BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.1) Tính so đo góc AMB2) Chứng minh EH song song với BC3) Chứng minh AFEK nội tiếp4) Chứng minh...
Đọc tiếp

Cho đường tròn tâm O đường kính AB=2R. Cho C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE=AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại đường tròn tại điểm thứ hai là D. Tia AC và BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.

1) Tính so đo góc AMB

2) Chứng minh EH song song với BC

3) Chứng minh AFEK nội tiếp

4) Chứng minh I là trung điểm của AE

5)AD cắt CE tại I. Chứng minh CI đi qua trung điểm của HJ

6)Vẽ đường kính CP, CB cắt AD tại O', MO' cắt AB tại N. Chứng minh P,N,D thẳng hàng

7)AD cắt CO tại S, BS cắt AC tại Q. Chứng minh QC.QM=QS.QB

8)Chứng minh PNCE là hình thoi và góc NPE = 45o, CN là phân giác của OCP

9)CD cắt AB tại L. Chứng minh LN.LO=LP.LA và NB.AL=NA.BL

10)CN cắt AD tại V. Chứng minh VL,DN,CB đồng quy

0

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đo: ΔACB vuông tại C

Xét (O) co

ΔADB nội tiếp

ABlà đườg kính

Do đó:ΔADB vuông tại D

AC*AM=AB^2

AD*AN=AB^2

=>AC*AM=AD*AN

b: Xét ΔOBI và ΔOCI có

OB=OC

IB=IC

OI chung

Do đó:ΔOBI=ΔOCI

=>góc OCI=90 độ

=>IC là tiếp tuyến của (O)