Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, có : ^DCH + ^HCB = 90
^HCB + ^CBH = 90
=> ^DCH = ^HBC (1)
có : ^DHC + ^CHN = 90
^BHN + ^NHC = 90
=> ^DHC = ^BHN (2)
(1)(2) => tg CHD đồng dạng với tg BHN (g-g)
b, ^HMB + ^MBH = 90
^HBC + ^HBM = 90
=> ^HMB = ^HBC
xét tg MBH và tg BCH có : ^MHB = ^CHB = 90
=> tg MHB đồng dạng với tg BHC (g-g)
b, tg MHB đồng dạng với tg BHC (câu b) => MB/BC = HB/HC (đn)
tg CHD đồng dạng với tg BHN (câu a) => BN/DC = HB/HC (đn)
=> MB/BC = BN/DC
BC = DC do ABCD là hình vuông (gt)
=> BM = BN
Lời giải:
a) Xét tam giác $ADH$ và $ACB$ có:
$\widehat{ADH}=\widehat{ACB}$ (do tính chất hcn)
$\widehat{AHD}=\widehat{ABC}=90^0$
$\Rightarrow \triangle ADH\sim \triangle ACB$ (g.g)
$\Rightarrow \frac{AD}{AC}=\frac{DH}{CB}=\frac{DE}{CK}$
$\Rightarrow \triangle ADE\sim \triangle ACK$ (c.g.c)
b)
Từ tam giác đồng dạng phần a suy ra:
- $\widehat{DAE}=\widehat{CAK}$ (1)
$\Rightarrow \widehat{DAE}+\widehat{EAC}=\widehat{CAK}+\widehat{EAC}$
Hay $\widehat{DAC}=\widehat{EAK}$
- $\frac{AE}{AD}=\frac{AK}{AC}$ (2)
Từ $(1);(2)\Rightarrow \triangle AEK\sim \triangle ADC$ (c.g.c)
c)
$\Rightarrow \widehat{AEK}=\widehat{ADC}=90^0$ (đpcm)
a Xét tam giác dhc và tam giác nhb ta có :
Góc DHC = góc NHB ( cùng phụ góc NHC)
Mà góc DCH = góc NBH ( cùng phụ góc HCB )
=> t/g DHC đồng dạng t/g NHB (g.g)