K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAED vuông tại A và ΔDFC vuông tại D có

AD=DC

AE=DF

=>ΔAED=ΔDFC

=>FC=DE

b: Xét tứ giác DQPF có

I là trung điểm chung của DP và QF

DP vuông góc DF

=>DQPF là hình thoi

21 tháng 9 2018

A B C D E F K I O

a) + Tứ giác ABCD là hình bình hành

\(\Rightarrow\hept{\begin{cases}AB//CD\\AO=CO\end{cases}}\)

Tứ giác AECF có : \(\hept{\begin{cases}AE//CF\\AE=CF\end{cases}}\)

=> Tứ giác AECF là hình bình hành

=> AC và EF cắt nhau tại trung điểm của mỗi đường

=> O là trung điểm của EF

=> E đối xứng với F qua O

b) + Tứ giác ABCD là hình bình hành

=> AB = CD         => AB - AE = CD - CF

=> BE = DF

Tứ giác BEDF có : \(\hept{\begin{cases}BE=DF\\BE//DF\end{cases}}\)

=> tứ giác BEDF là hình bình hành

=> DE // BF

+ Tứ giác IEKF có : \(\hept{\begin{cases}IE//KF\\IF//KE\end{cases}}\)

=> tứ giác IEKF là hình bình hành

=> IK và EF cắt nhau tại trung điểm mỗi đường

=> O là trung điểm của IK

=> I đối xứng với K qua O

25 tháng 9 2022

Sai rồi

9 tháng 3 2018

a) DDAE = DBAF (c.g.c)

⇒   D A E ^ = B A F ^  và AE = AF

Mà E A D ^ + E A B ^ = 90 0   = >   E A B ^ + B A F ^ = 90 0  

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.