Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHMK có \(\widehat{AHM}+\widehat{AKM}=90^0+90^0=180^0\)
nên AHMK là tứ giác nội tiếp đường tròn đường kính AM
Tâm là trung điểm của AM
b: Xét (O) có
\(\widehat{BAD}\) là góc nội tiếp chắn cung BD
\(\widehat{BCD}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{BAD}=\widehat{BCD}\left(1\right)\)
Ta có: AKMH là tứ giác nội tiếp
=>\(\widehat{KAM}=\widehat{KHM}\)
=>\(\widehat{BAD}=\widehat{KHM}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{BCD}=\widehat{KHM}\)
Xét (O) có
\(\widehat{DAC}\) là góc nội tiếp chắn cung DC
\(\widehat{DBC}\) là góc nội tiếp chắn cung DC
Do đó: \(\widehat{DAC}=\widehat{DBC}\left(3\right)\)
Ta có: AHMK là tứ giác nội tiếp
=>\(\widehat{MAH}=\widehat{MKH}=\widehat{DAC}\left(4\right)\)
Từ (3),(4) suy ra \(\widehat{DBC}=\widehat{MKH}\)
Xét ΔMKH và ΔDBC có
\(\widehat{MKH}=\widehat{DBC}\)
\(\widehat{MHK}=\widehat{DCB}\)
Do đó: ΔMKH~ΔDBC
a . i ) Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\Rightarrow CMOA\) nội tiếp đường tròn đường kính CO
Tương tự : = > DMOB nội tiếp
ii ) Vì CM,CA là tiếp tuyến của (O) \(\Rightarrow OC\) là phân giác của \(\widehat{AOM}\)
Tương tự OD là phân giác \(\widehat{BOM}\)
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\Rightarrow OC\perp OD\)
Ta có : CMOA , OBDM nội tiếp
\(\Rightarrow\widehat{AOC}=\widehat{AMC}=\widehat{ABM}=\widehat{OBM}=\widehat{ODM}\) vì CM là tiếp tuyến của (O)
b ) Ta có : \(\widehat{MAB}=60^0\Rightarrow\widehat{DMB}=\widehat{MAB}=60^0\) vì DM là tiếp tuyến của (O)
Mà \(DM=DB\Rightarrow\Delta DMB\) đều
Lại có : \(\widehat{MOB}=2\widehat{MAB}=120^0\)
\(\Rightarrow\frac{S_{MB}}{S_O}=\frac{120^0}{360^0}=\frac{1}{3}\)
\(\Rightarrow S_{MB}=\frac{1}{3}S_O=\frac{1}{3}.\pi.R^2\)
a) i) ta có \(\widehat{CAO}=\widehat{CMO}=90^0\)
=> tứ giác AOMC nội tiếp đường tròn đường kính OC
tương tự ta lại có \(\widehat{DBO}=\widehat{DMO}=90^0\)
=> tứ giác BOMD nội tiếp đường tròn đường kính OD
ii) Ta có \(\widehat{OBM}=\frac{1}{2}\widehat{AOM}\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung)
\(\widehat{AOC}=\frac{1}{2}\widehat{AOM}\)(t/c 2 đường tiếp tuyến cắt nhau )
=>\(\widehat{OBM}=\widehat{AOC}\)
=> \(OC//BM\)mà \(BM\perp OD\)(tính chất 2 tiếp tuyến cắt nhau)
=>\(OC\perp OD\)(dpcm)
ta có \(\widehat{AOC}=\widehat{AMC}\left(1\right)\)( hai góc nội tiếp cùng chắn 1 cung AC của đường tròn đường kính OD )
\(\widehat{OBM}=\widehat{ODM}\left(2\right)\)(hai góc nội tiếp cùng chắn 1 cung OM của đường tròn đường kính OD)
\(\widehat{AOC}=\widehat{OBM}\left(3\right)\left(cmt\right)\)
zậy từ 1 ,2 ,3 => góc AOC= góc AMC = góc OBM = góc ODM
b)+) \(\widehat{BAM}=\widehat{BMD}=60^0\)( góc nội tiếp zà góc giữa 1 tia tiếp tuyến zà một dây cung cùng chắn 1 cung)
mà tam giác DBM cân tại D ( t/c 2 tiếp tuyến cát nhau )
=> tam giác DBM đều (dpcm)
+)\(\widehat{BOM}=2\widehat{BAM}=120^0\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung )
gọi S là diện tích cần tìm
\(=>S=\frac{\pi R^2120}{360}=\frac{\pi R^2}{3}\)(đơn zị diện tích )
Gọi hình chiếu của B và C trên đường thẳng EF lần lượt là G và K
Ta có: AE và AF là 2 tiếp tuyến của (I) => AE=AF => \(\Delta\)EAF cân đỉnh A
=> ^AEF=^AFE => ^GEB=^KFC (2 góc đối đỉnh)
=> \(\Delta\)BGE ~ \(\Delta\)CKF (g.g) => \(\frac{BE}{CF}=\frac{GE}{KF}\)
Mà \(\frac{BE}{CF}=\frac{BD}{CD}\)(Vì BE=BD và CF=CD theo t/c tiếp tuyến)
\(\Rightarrow\frac{BD}{CD}=\frac{GE}{KF}\). Lại có: Tứ giác BGKC là hình thang có DH//BG//CK
\(\Rightarrow\frac{BD}{CD}=\frac{GH}{KH}=\frac{GE}{KF}=\frac{GH-GE}{KH-KF}=\frac{EH}{FH}\)(T/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{BE}{CF}=\frac{EH}{FH}\)
Xét \(\Delta\)BEH và \(\Delta\)CFH: ^BEH=^CFH (Bù 2 góc ^AEF và ^AFE bằng nhau); \(\frac{BE}{CF}=\frac{EH}{FH}\)
=> \(\Delta\)BEH ~ \(\Delta\)CFH (c.g.c) => ^BHE=^CHF => 900 - ^BHE = 900 - ^CHF
=> ^BHD=^CHD => HD là phân giác ^BHC (đpcm).