Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tg là tam giác nha !
a )
Ta có : gócA1 + gócBAC = gócDAC ( AB nằm giữa AD và AC )
=> gócA1 = gócDAC - gócBAC = 90o - gócBAC ( 1 )
Ta có : gócA2 + gócBAC = gócBAE ( AC nằm giữa AB và AE )
=> gócA2 = gócBAE - gócBAC = 90o - gócBAC ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : gócA1 = gócA2 .
Xét tgABD và tgACE , có :
AD = AC ( gt )
AB = AE ( gt )
gócA1 = gócA2 ( cmt )
Do đó : tgABD = tgACE ( c - g - c )
=> BD = CE ( 2 cạnh tương ứng ) .
b ) Xét tgABM và tgNCM , có :
gócM1 = gócM2
BM = CM ( AM là trung tuyến)
AM = NM ( gt )
Do đó : tgABM = tgNCM ( c - g - c )
=> gócC1 = gócB1 ( 2 góc tương ứng )
Mà : gócB1 = gócADC + gócA1 ( góc ngoài của tg bằng tổng 2 góc trong không kề với nó )
Do đó : gócC1 = gócADC + gócA1
Ta có : gócC2 + gócDAC + gócADC = 180o ( tổng 3 góc trong tg )
=> gócC2 = 180o - gócDAC - gócADC = 180o - 90o - gócADC = 90o - gócADC
Ta có : gócACN = gócC1 + gócC2 ( DC nằm giữa AC và NC )
=> gócACN = ( gócADC + gócA1 ) + ( 90o - gócADC ) = gócADC + gócA1 + 90o - gócADC = 90o + gócA1 ( 3 )
Ta có : gócDAE = gócBAE + gócA1 ( AB nằm giữa AD và AE )
=> gócDAE = 90o + gócA1 ( 4 )
Từ ( 3 ) và ( 4 ) suy ra : gócACN = gócDAE ( 5 )
Ta có : tgABM = tgNCM ( cmt )
=> AB = CN ( 2 cạnh tương ứng )
Mà : AB = AE ( gt )
Do đó : CN = AE ( 6 )
Xét tgADE và tgACN , có :
AD = AC ( gt )
AE = CN ( cmt ( 6 ) )
gócACN = gócDAE ( cmt ( 5 ) )
Do đó : tgADE = tgACN ( c - g - c )
c ) Nằm ngoài khả năng của mình rồi !
Học tốt nha !
Vì t/g FDC là t/g đều nên DF=DC=FC
Mà DC=AD=AB=BC suy ra FC=BC
Suy ra t/g FCB cân tại C =>góc CFB=góc CBF (1)
Mặt khác có: góc FCB =góc DCB + góc DCF = 900 + 600 =1500
Suy ra : góc CFB + góc CBF =300 (2)
Từ (1) và (2) suy ra : góc CFB=góc CBF =150 (3)
Theo bài ra ta có : góc EBC =150 (4)
Từ (3) và (4) suy ra 3 diểm B ,E ,F thẳng hàng
Không vẽ hình vì sợ duyệt nhé.
Tứ giác ADNM nội tiếp nên \(\widehat{ADM}=\widehat{ANM}\)
Tứ giác AMCD là hình vuông nên \(\widehat{ADM}=45^0\)
Từ đó \(\widehat{ANM}=45^0\)
Tứ giác BENM nội tiếp nên \(\widehat{ENM}+\widehat{EBN}=180^0\)\(\Rightarrow\widehat{ENM}=180^0-\widehat{EBM}\)
Tứ giác BMEF là hình vuông nên \(\widehat{EBM}=45^0\)
Từ đó \(\widehat{ENM}=180^0-45^0=135^0\)
Ta có \(\widehat{ANE}=\widehat{ANM}+\widehat{ENM}=45^0+135^0=180^0\)
Từ đó ta có A, N, E thẳng hàng.
a) Xét \(\Delta\)ABM và \(\Delta\)ADN có: ^ABM = ^ADN (=900); AB=AD; BM=DN => \(\Delta\)ABM = \(\Delta\)ADN (c.g.c)
=> AM=AN (2 canh tương ứng); ^BAM = ^DAN (2 góc tương ứng). Mà ^BAM + ^DAM = 900
=> ^DAN + ^DAM = ^MAN = 900 => AM vuông góc AN
Ta có: MF//AN; NF//AM; AM vuông góc AN nên ^MAN = ^AMF = ^ANF = 900
Do đó: Tứ giác ANFM là hình chữ nhật. Lại có: AM=AN (cmt) => Tứ giác ANFM là hình vuông (đpcm).
b) Gọi I và J lần lượt là hình chiếu của F trên 2 đường thẳng CD và BC
Tứ giác ANFM là hình vuông => FM=FN
Xét tứ giác CNFM có: ^MCN = ^MFN = 900 => ^FNC + ^CMF = 1800 => ^FNC = ^FMJ hay ^FNI = ^FMJ
Xét \(\Delta\)FIN và \(\Delta\)FJM có: ^FIN = ^FJM (=900); FN=FM; ^FNI = ^FMJ
=> \(\Delta\)FIN = \(\Delta\)FJM (Ch.gn) => FI = FJ (2 cạnh tương ứng)
Xét ^MCN: Có FI và FJ là k/c từ điểm F tới 2 cạnh của góc này; FI=FJ
=> F nằm trên đường phân giác của ^MCN (đpcm).
c) Gọi giao điểm của tia AD và CF là E.
CF là phân giác ^MCN => ^FCN = ^MCN/2 = 450 => ^FCN = ^ACD = 450
=> \(\Delta\)ACE vuông tại C có đường phân giác CD. Mà CD vuông góc AE
=> \(\Delta\)ACE vuông cân tại C = >CD đồng thời là đường trung tuyến => D là trung điểm AE
Suy ra: OD là đường trung bình \(\Delta\)FAE => OD // EF hay OD // CF (1)
Dễ c/m: BD // CF (Do ^DBC + ^BCF = 450 + 1350 = 1800) (2)
Từ (1) và (2) => 3 điểm B;D;O thẳng hàng (đpcm).
d) Ta thấy: B;D;O là 3 điểm thẳng hàng; BD cố định nên O luôn thuộc đường thẳng BD cố định khi M di động trên Cx.