Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ABCD là hình vuông
nên DB là tia phân giác của \(\widehat{ADC}\)
\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)
hay \(\widehat{FDM}=45^0\)
Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)
nên ΔMFD vuông cân tại F
Suy ra: FM=FD(1)
Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)
\(\widehat{AFM}=90^0\)
\(\widehat{AEM}=90^0\)
Do đó: AEMF là hình chữ nhật
Suy ra: AE=MF(2)
Từ (1) và (2) suy ra AE=DF
Xét ΔAED vuông tại A và ΔDFC vuông tại F có
AE=DF
AD=DC
Do đó: ΔAED=ΔDFC
Suy ra: DE=CF
a, AEMF là hình chữ nhật nên AE=FM
ΔDFM vuông cân tại F suy ra FM=DF
⇒AE=DFsuy ra ΔADE=ΔDCF
⇒DE=CF
b, Tương tự câu a, dễ thấy AF=BE
⇒ΔABF=ΔBCE
⇒ABF^=BCE^ nên BF vuông góc CE
Gọi H là giao điểm của BFvà DE
⇒H là trực tâm của tam giác CEF
Gọi N là giao điểm của BCvà MF
CN=DF=AEvà MN=EM=AF
ΔAEF=ΔCMN
⇒ˆAEF=ˆMCN
⇒CM⊥EF
a) AEMF là hình chữ nhật nên AE=FM
\(\Delta DFM\) vuông cân tại F suy ra FM=DF
⇒AE=DF suy ra ΔADE=ΔDCF(c.g.c)
⇒DE=CF
Gọi \(DE\cap CF=H\)
Ta có ΔADE=ΔDCF(c.g.c)
\(\Rightarrow\widehat{ADE}=\widehat{DCF}\)
\(\Rightarrow\widehat{ADE}+\widehat{DFH}=\widehat{DCF}+\widehat{DFH}=90\)
\(\Rightarrow\Delta FHD\) vuông tại H
\(\Rightarrow CF\perp DE\)
b) Kẻ thêm AM
Ta được AM=EF (AEMF là hcn)
Dễ thấy \(\Delta ADM=\Delta CDM\left(c.g.c\right)\)
(do AD=DC; DM chung; góc ADM = góc CDM)
Nên AM=CM, mà AM=EF
Vậy CM=EF
Gọi \(EM\cap CD=N;CM\cap EF=I\)
Dễ chứng minh \(\Delta AEM=\Delta NMC\left(c.g.c\right)\)
(AE=MN; EM=NC; góc AEM = góc MNC)
Nên góc MAE = góc CMN = góc IME (đối đỉnh)
Mà \(\widehat{MAE}+\widehat{AME}=90\) nên \(\widehat{IME}+\widehat{AME}=90\)
Suy ra \(\widehat{IME}+\widehat{IEM}=90\) (\(\widehat{AME}=\widehat{MEI}\))
\(\RightarrowĐPCM\)
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
a, \(AEMF\)là hình chữ nhật nên \(AE=FM\)
\(DFM\)vuông cân tại \(F\)suy ra \(FM=DF\)
\(\Rightarrow AE=DF\)suy ra \(\Delta ADE=\Delta DCF\)
\(\Rightarrow DE=CF\)
b, Tương tự câu a, dễ thấy \(AF=BE\)
\(\Rightarrow\Delta ABF=\Delta BCE\)
\(\Rightarrow\widehat{ABF}=\widehat{BCE}\) nên \(BF\)vuông góc \(CE\)
Gọi \(H\)là giao điểm của \(BF\)và \(DE\)
\(\Rightarrow H\)là trực tâm của tam giác \(CEF\)
Gọi \(N\)là giao điểm của \(BC\)và \(MF\)
\(CN=DF=AE\)và \(MN=EM=AF\)
\(\Delta AEF=\Delta CMN\)
\(\Rightarrow\widehat{AEF}=\widehat{MCN}\)
\(\Rightarrow CM\perp EF\)
\(\Rightarrow\)Ba đường thẳng DE,BF,CM đồng quy tại H
c, \(AE+EM=AE+EB=AB\)không đổi
\(\left(AE-EM\right)^2\ge0\Rightarrow AE^2+AM^2\ge2AE.AM\)
\(\Rightarrow\left(AE+AM\right)^2\ge4AE.AM\Rightarrow\left(\frac{AE+EM}{2}\right)^2=\frac{AB^2}{4}\ge AE.AM=S_{AEMF}\)
Vậy \(S_{AEMF}max\)khi \(AE=EM\)( M là giao AC và và BD )
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
cô Quản Lý Hoàng Thị Thu Huyền ơi cô bảo tham khảo ở đâu thế ạ ? sao em ko thấy đường link hay bài đăng j vậy