Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AOMC có
ˆCAOCAO^ và ˆCMOCMO^ là hai góc đối
ˆCAO+ˆCMO=1800(900+900=1800)CAO^+CMO^=1800(900+900=1800)
Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Ta có: AOMC là tứ giác nội tiếp(cmt)
nên ˆMAO=ˆOCMMAO^=OCM^(hai góc cùng nhìn cạnh OM)
hay ˆMAB=ˆOCDMAB^=OCD^
Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(Gt)
CA là tiếp tuyến có A là tiếp điểm(Gt)
Do đó: OC là tia phân giác của ˆAOMAOM^(Tính chất hai tiếp tuyến cắt nhau)
⇔ˆAOM=2⋅ˆCOM⇔AOM^=2⋅COM^
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: OD là tia phân giác của ˆMOBMOB^(Tính chất hai tiếp tuyến cắt nhau)
⇔ˆBOM=2⋅ˆMOD⇔BOM^=2⋅MOD^
Ta có: ˆAOM+ˆBOM=1800AOM^+BOM^=1800(hai góc kề bù)
mà ˆAOM=2⋅ˆCOMAOM^=2⋅COM^(cmt)
và ˆBOM=2⋅ˆMODBOM^=2⋅MOD^(cmt)
nên 2⋅ˆCOM+2⋅ˆMOD=18002⋅COM^+2⋅MOD^=1800
⇔ˆCOM+ˆMOD=900⇔COM^+MOD^=900
mà ˆCOM+ˆMOD=ˆCODCOM^+MOD^=COD^(tia OM nằm giữa hai tia OC,OD)
nên ˆCOD=900COD^=900
Xét ΔCOD có ˆCOD=900COD^=900(cmt)
nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)
Xét (O) có
ΔMAB nội tiếp đường tròn(M,A,B∈(O))
AB là đường kính(gt)
Do đó: ΔMAB vuông tại M(Định lí)
Xét ΔAMB vuông tại M và ΔCOD vuông tại O có
ˆMAB=ˆOCDMAB^=OCD^(cmt)
Do đó: ΔAMB∼ΔCOD(g-g)
⇔AMCO=BMDOAMCO=BMDO(Các cặp cạnh tương ứng tỉ lệ)
hay AM⋅OD=BM⋅OCAM⋅OD=BM⋅OC(đpcm)
a . Gọi O là tâm của đường tròn có đường kính BC.
Xét \(\Delta\)BMC vuông tại M có O là trung điểm của BC (OB=OC)
\(\Rightarrow CB=MO=OC\)
\(\Leftrightarrow M\in\left(O;OB\right)\left(1\right)\)
Xét hình thang ABCD có :
M là trung điểm của AD;O là trung điểm của BC
\(\Rightarrow MO\) là đường trung bình
\(\Leftrightarrow\)AB//MO
Mà AD\(\perp\)AB
\(\Rightarrow MO\perp AD\left(2\right)\)
Từ \(\left(1\right)\left(2\right)suyra\) AD là tiếp tuyến của đường tròn đường kính BC
Theo tính chất 2 tiếp tuyến cắt nhau, ta có:
\(\left\{{}\begin{matrix}AD=MD\\BC=MC\end{matrix}\right.\Rightarrow AD+BC=MD+MC=CD\)
Vì \(\left\{{}\begin{matrix}AD=MD\\OA=OM=R\end{matrix}\right.\Rightarrow OD\) là trung trực AM
Mà tam giác OAM cân tại O nên OD cũng là p/g
\(\Rightarrow\widehat{DOM}=\dfrac{1}{2}\widehat{AOM}\)
Cmtt: \(\widehat{COM}=\dfrac{1}{2}\widehat{BOM}\)
Mà \(\widehat{AOM}+\widehat{BOM}=180^0\)
Cộng VTV ta được \(\widehat{COD}=\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\left(\widehat{AOM}+\widehat{MOB}\right)=90^0\)
Gọi I là trung điểm CD
\(\Rightarrow OI=IC=ID=\dfrac{1}{2}CD\)
Do đó I là tâm \(\left(COD\right)\)
Lại có \(\left\{{}\begin{matrix}IC=ID\\OA=OB\end{matrix}\right.\Rightarrow OI\) là đtb
\(\Rightarrow OI\text{//}AC\Rightarrow OI\bot AB\)
Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.
Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.