Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$M\in AC$ thì $BM$ cắt $AC$ tại $M$ luôn rồi bạn chứ sao là điểm E được?
Bạn xem lại đề.
A B C D M N E F I
Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp
tương tự có đpcm
b, ta có:
MFN=DAB=90
NEM=BCD=90
=> nội tiếp
c, theo câu b ta có:
MNB=BEC=BNC nên: NB là phân giác góc INC
thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN
do đó áp dụng tính chất đường phân giác ta được BI=BC=a.
Chứng minh góc EBN = góc ECN = 450
=> Tứ giác BENC nội tiếp (đpcm)
a.
DO ABCD là hình vuông \(\Rightarrow\widehat{ACD}=45^0\)
\(\Rightarrow\widehat{ACD}=\widehat{EBN}\)
Mà \(\widehat{ACD}\) và \(\widehat{EBN}\) cùng chắn EN
\(\Rightarrow\) Tứ giác BENC nội tiếp
\(\Rightarrow\widehat{BEN}+\widehat{BCN}=180^0\)
\(\Rightarrow\widehat{BEN}=180^0-\widehat{BCN}=180^0-90^0=90^0\)
\(\Rightarrow NE\perp BM\) tại E
b.
Tương tự ta có tứ giác ABFM nội tiếp (\(\widehat{MAF}=\widehat{MBF}=45^0\) cùng chắn MF)
\(\Rightarrow\widehat{BFM}+\widehat{BAM}=180^0\)
\(\Rightarrow\widehat{BFM}=90^0\Rightarrow MF\perp BN\)
\(\Rightarrow I\) là trực tâm của tam giác BMN
\(\Rightarrow BI\perp MN\)
c.
Gọi H là giao điểm BI và MN
Do E và F cùng nhìn MN dưới 1 góc vuông
\(\Rightarrow\) Tứ giác EFMN nội tiếp
\(\Rightarrow\widehat{EMN}+\widehat{EFN}=180^0\)
Mà \(\widehat{EFN}+\widehat{EFB}=180^0\)
\(\Rightarrow\widehat{EMN}=\widehat{EFB}\)
Lại có tứ giác ABFM nội tiếp (A và F cùng nhìn BM dưới 1 góc vuông)
\(\Rightarrow\widehat{EFB}=\widehat{AMB}\) (cùng chắn AB)
\(\Rightarrow\widehat{EMN}=\widehat{AMB}\)
\(\Rightarrow\Delta_VAMB=\Delta_VHMB\left(ch-gn\right)\)
\(\Rightarrow AM=HM\)
Đồng thời suy ra \(AB=BH\Rightarrow BH=BC\) (do AB=BC)
Theo Pitago: \(\left\{{}\begin{matrix}HN=\sqrt{BN^2-BH^2}\\CN=\sqrt{BN^2-BC^2}\end{matrix}\right.\) \(\Rightarrow CN=HN\)
\(\Rightarrow AM+CN=MH+NH=MN\)
\(\Rightarrow MD+DN+MN=MD+DN+AM+CN=AD+CD=2a\)
Pitago: \(MN^2=DM^2+DN^2\ge\dfrac{1}{2}\left(DM+DN\right)^2\Rightarrow MN\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)
\(\Rightarrow2a-\left(DM+DN\right)\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)
\(\Rightarrow2a\ge\left(\dfrac{2+\sqrt{2}}{2}\right)\left(DM+DN\right)\ge\left(2+\sqrt{2}\right).\sqrt{DM.DN}\)
\(\Rightarrow DM.DN\le\left(6-4\sqrt{2}\right)a^2\)
\(\Rightarrow S_{MDN}=\dfrac{1}{2}DM.DN\le\left(3-2\sqrt{2}\right)a^2\)
Dấu "=" xảy ra khi \(DM=DN=\left(\sqrt{6}-\sqrt{2}\right)a\)
a) Để chứng minh tứ giác ABFM là tứ giác nội tiếp, ta cần chứng minh góc AMB + góc AFB = 180 độ.
Góc AMB là góc giữa đường chéo BD và cạnh AB của hình vuông ABCD. Vì đường chéo BD cắt AE tại M, nên góc AMB chính là góc EAM.
Góc AFB là góc giữa đường thẳng EF và cạnh AB của hình vuông ABCD. Vì đường thẳng EF song song với cạnh AB, nên góc AFB bằng góc EAF.
Theo đề bài, góc EAF + 45 độ = 180 độ. Do đó, góc EAF = 180 - 45 = 135 độ.
Vậy, ta có góc AMB + góc AFB = góc EAM + góc EAF = 135 độ + 135 độ = 270 độ = 180 độ.
Vì tổng hai góc AMB và AFB bằng 180 độ, nên tứ giác ABFM là tứ giác nội tiếp.
b) Khi E và F di động trên các cạnh BC và CD của hình vuông ABCD, ta cần chứng minh rằng đường thẳng EF luôn tiếp xúc với một đường tròn cố định.
Gọi O là giao điểm của đường chéo BD và đường thẳng EF. Ta cần chứng minh rằng O nằm trên một đường tròn cố định khi E và F di động.
Vì góc EAF + 45 độ = 180 độ, nên góc EAF = 135 độ. Điều này có nghĩa là tam giác EAF là tam giác cân tại A.
Do đó, đường trung tuyến MN của tam giác EAF là đường cao và đường trung trực của cạnh EF. Vì M và N lần lượt là giao điểm của đường trung tuyến MN với AE và AF, nên M và N là trung điểm của AE và AF.
Vì M và N là trung điểm của hai cạnh của hình vuông ABCD, nên OM và ON là đường trung trực của AB và AD. Do đó, O nằm trên đường trung trực của cạnh AB và AD.
Vì AB và AD là hai cạnh cố định của hình vuông ABCD, nên đường trung trực của AB và AD là đường thẳng cố định. Vậy, O nằm trên một đường tròn cố định.
Vì vậy, khi E và F di động trên các cạnh BC và CD của hình vuông ABCD, đường thẳng EF luôn tiếp xúc với một đường tròn cố định.