Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Xét ΔEAD và ΔEBF có
góc EAD=góc EBF
góc AED=góc BEF
=>ΔEAD đồng dạng với ΔEBF
a: Xét ΔEAD và ΔEBK có
góc EAD=góc EBK
góc AED=góc BEK
=>ΔEAD đồng dạng với ΔEBK
b: Xét ΔAED và ΔHDC có
góc AED=góc HDC
góc A=góc DHC
=>ΔAED đồng dạngvới ΔHDC
=>AE/HD=AD/HC
=>AE*HC=HD*AD
d: CD^2+CB*KB
=BC^2+BC*KB
=BC*(BC+KB)
=BC*KC
=CD*KC=CH*KD
bạn ơi hình như bạn ghi lộn đúng ko đoạn đường thẳng DE cach CB kéo dài tại K OQ
a) Ta có: AE+EB=AB(E nằm giữa A và B)
nên AE=AB-EB=12-3=9(cm)
Áp dụng định lí Pytago vào ΔAED vuông tại A, ta được:
\(DE^2=AD^2+AE^2\)
\(\Leftrightarrow DE^2=12^2+9^2=225\)
hay DE=15(cm)
Vậy: DE=15cm
a: Xét ΔFEB và ΔFDC có
góc FEB=góc FDC
góc F chung
=>ΔFEB đồng dạng với ΔFDC
Xét ΔEAD và ΔEBF có
góc EAD=góc EBF
góc AED=góc FEB
=>ΔEAD đồng dạng với ΔEBF
Xét ΔABD và ΔCDB có
góc ABD=góc CDB
góc A=góc C
=>ΔABD đồng dạng với ΔCDB
Xét ΔABC và ΔCDA có
góc ABC=góc CDA
góc BAC=góc DCA
=>ΔABC đồng dạng với ΔCDA
a) Áp dụng định lí: Một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại tạo thành một tam giác mới đồng dạng với tam giác đã cho.
ΔFCD có EB // CD (E ∈ FD, B ∈ FC)
⇒ ΔFEB ΔFDC (1)
ΔAED có FB // AD (F ∈ DE, B ∈ AE)
⇒ ΔFEB ΔDEA (2)
Từ (1) và (2) suy ra: ΔDEA ΔFDC (tính chất)
b) AB = 12cm, AE = 8cm
⇒ EB = AB – AE = 12 - 8 = 4cm.
Vì ABCD là hình bình hành nên AD = BC = 7cm
Do ΔFEB ΔDEA
⇒ EF = 5cm, BF = 3,5cm.
i don't now
mong thông cảm !
...........................