Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. Ta có: \(\overrightarrow a = (1;1) \Rightarrow \;|\overrightarrow a |\; = \sqrt {{1^2} + {1^2}} = \sqrt 2 \ne 1\). (Loại)
B. Ta có: \(\overrightarrow b = (1; - 1) \Rightarrow \;|\overrightarrow b |\; = \sqrt {{1^2} + {{( - 1)}^2}} = \sqrt 2 \ne 1\). (Loại)
C. Ta có: \(\overrightarrow c = \left( {2;\dfrac{1}{2}} \right) \Rightarrow \;|\overrightarrow c |\; = \sqrt {{2^2} + {{\left( {\dfrac{1}{2}} \right)}^2}} = \dfrac{{\sqrt {17} }}{2} \ne 1\). (Loại)
D. Ta có: \(\overrightarrow d = \left( {\dfrac{1}{{\sqrt 2 }};\frac{{ - 1}}{{\sqrt 2 }}} \right) \Rightarrow \;|\overrightarrow a |\; = \sqrt {{{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\frac{{11}}{{\sqrt 2 }}} \right)}^2}} = 1\). (Thỏa mãn yc)
Chọn D
Lời giải:
Trên tia đối tia $CB$ lấy $N$ sao cho $CB=CN$
\(|\overrightarrow{MC}+\overrightarrow{BC}|=|\overrightarrow{MC}+\overrightarrow{CN}|=|\overrightarrow{MN}|\)
Xét tam giác $BMC$ và $ADI$ có:
$\widehat{B}=\widehat{A}=90^0$
$\widehat{D}=\widehat{M}$ (cùng bù $\widehat{AMC})$
Do đó 2 tam giác này đồng dạng
$\Rightarrow \frac{BM}{BC}=\frac{AD}{AI}$
$\Rightarrow BM=BC.\frac{AD}{AI}=\frac{2BC^2}{AB}=\frac{3\sqrt{2}a}{4}$
$BN=2BC=a\sqrt{3}$
Do đó, áp dụng định lý Pitago:
$|\overrightarrow{MN}|=MN=\sqrt{BM^2+BN^2}=\frac{\sqrt{66}a}{4}$
Tam giác ABC là tam giác đều?
Nếu ABC đều thì \(\left|\overrightarrow{BM}\right|=BM=\dfrac{a\sqrt{3}}{2}\)
\(\left|\overrightarrow{AB}-\overrightarrow{BC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CB}\right|=BD=a\sqrt{6}\)
\(\left|\vec{AD}+\vec{AB}\right|=\left|\vec{AC}\right|=AC=a\sqrt{2}\)
Han Nguyen
Quy tắc hình bình hành mà em, sau đó dùng Pitago nữa là ra đường chéo.
Hoặc như này dễ hiểu hơn:
\(\left|\vec{AD}+\vec{AB}\right|=\left|\vec{AD}+\vec{DC}\right|=\left|\vec{AC}\right|=AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)