Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo hệ quả của định lý Thales ta có:
\(\dfrac{DN}{AB}=\dfrac{AF}{FD};\dfrac{CM}{AB}=\dfrac{CE}{EB}\Rightarrow\dfrac{DN}{AB}.\dfrac{CM}{AB}=\dfrac{AF}{FD}.\dfrac{CE}{EB}=1\Rightarrow DN.CM=a^2\).
b) Do \(CM.DN=a^2=AD.BC\Rightarrow\dfrac{CM}{BC}=\dfrac{AD}{DN}\).
Mà \(\widehat{MCB}=\widehat{ADN}=90^o\Rightarrow\Delta NDA\sim\Delta BCM\left(c.g.c\right)\Rightarrow\widehat{AND}=\widehat{MBC}\Rightarrow\widehat{AND}+\widehat{MCB}=\widehat{MBC}+\widehat{MCB}=90^o\Rightarrow\widehat{MKN}=90^o\).
c) Áp dụng bất đẳng thức AM - GM:
\(DN+CM\ge2\sqrt{DN.CM}=2a\).
Do đó \(MN=DN+DC+CM\ge2a+a=3a\).
Đẳng thức xảy ra khi và chỉ khi DN = CM \(\Leftrightarrow DN=CM=a\)
\(\Leftrightarrow\) E, F lần lượt là trung điểm của BC, DA.
F thuộc AB mà AB song song CD thì tại sao BF lại cắt CD được ?????
Cho hình vuông ABCD cạnh a, E thuộc BC, F thuộc AD sao Cho CE=AF. Các đường thẳng AE, BF cắt CD tại M và N
a, CMR: CM·DN=a2
b, K là giao của NA và MB. CMR: ^MKN=90
c, Các điểm E và F có vị trí ntn thì MN có độ dài ngắn nhất
Bạn tham khảo lời giải tại đây:
Câu hỏi của Uchiha Itachi - Toán lớp 8 | Học trực tuyến
a: Xét ΔCAD vuông tại A và ΔCED vuông tại E có
CD chung
CA=CE
=>ΔCAD=ΔCED
=>CA=CE và DA=DE
=>CD là trung trực của AE
=>CD vuông góc AE
b: Xét ΔDAF vuông tại A và ΔDEB vuông tại E có
DA=DE
AF=EB
=>ΔDAF=ΔDEB
=>góc ADF=góc EDB
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng