Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Đặt \(6x+7=y\)
\(PT\Leftrightarrow y^2\left(y-1\right)\left(y+1\right)=72\)
\(\Leftrightarrow y^4-y^2-72=0\)
\(\Leftrightarrow\left(y^2-9\right)\left(y^2+8\right)=0\)
Mà \(y^2+8>0\left(\forall y\right)\)
\(\Rightarrow y^2-9=0\Leftrightarrow\left(y-3\right)\left(y+3\right)=0\Leftrightarrow\left(6x+4\right)\left(6x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}6x+4=0\\6x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{cases}}\)
b) đk: \(x\ne\left\{-4;-5;-6;-7\right\}\)
\(PT\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)
Bài 2 không tiện vẽ hình nên thôi nhờ godd khác:)
Bài 3:
Ta có:
\(a_n=1+2+3+...+n\)
\(a_{n+1}=1+2+3+...+n+\left(n+1\right)\)
\(\Rightarrow a_n+a_{n+1}=2\cdot\left(1+2+3+...+n\right)+\left(n+1\right)\)
\(=2\cdot\frac{n\left(n+1\right)}{2}+n+1\)
\(=n^2+n+n+1=\left(n+1\right)^2\)
Là SCP => đpcm
a.vì tứ giác ABCD là hình bình hành
suy ra AB//CD, AB = CD
vì AB = CD mà M, N lần lượt là trung điểm AB, CD
suy ra AM = CN
mà AM//CN (M, N thuộc AB, CD) và AM = CN
\(\Rightarrow\) tứ giác AMCN là hình bình hành
b.MF//AE, M là trung điểm AB nên MF là đường trung bình của tam giác
Suy ra F là trung điểm của BE
c.vì AMCN là hình bình hành
suy ra AN//CM
xét tam giác ABE có
MF//AE, M là trung điểm AB
suy ra MF là đường trung bình của tam giác
suy ra F là trung điểm BE
chứng minh tương tự với tam giác CDF, ta được E là trung điểm DF
từ đó suy ra DE = EF = FB
a) Xét hình bình hành ABCD có:
AB=CD => AM=CN (1)
AB//CD => AM//CN (2)
Từ (1) và (2) => Tứ giác AMCN là hình bình hành (dấu hiệu 3)
b) Ta có: MF//AE (do CM//AN)
Xét tam giác BEA có:
MF//AE
AM=MB
=> MF là đường trung bình của tam giác BEA
=> EF=FB hay F là trung điểm của BE
c) Ta có: CF//NE (do CM//AN)
Xét tam giác DFC có:
DN=NC
CF//NE
=> NE là đường trung bình của tam giác DFC
=> DE=EF
mà EF=FB nên DE=EF=FB
a) Chứng minh được MBPD và BNDQ đều là hình bình hành Þ ĐPCM.
b) Áp dụng định lý Talet đảo cho DABD và DBAC tacos MQ//BD và MN//AC.
Mà ABCD là hình thoi nên AC ^ BD Þ MQ ^ MN
MNPQ là hình chữ nhật vì có các góc ở đỉnh là góc vuông