Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AH, BE cùng vuông góc d nên // nhau
AB//HE (AB//d đề cho)
=> ABEH là hình chữ nhật (2 cặp cạnh đối diện song song)
=> Diện tích ABEH = AB x BE (1)
Gọi M là giao điểm d và AD
gọi N là điểm thuộc d sao cho đối xứng với M qua I => IM = IN
Lại có IC = ID (I là trung điểm CD)
=> CNDM là hình bình hành => CN//MD hay CN//AD
Mà BC//AD (hình thang)
Nên B,C,N thẳng hàng
Chứng minh tam giác ICN = IDM (cạnh-góc-cạnh, 2 cặp cạnh bằng nhau chứng minh trên, góc đối đỉnh bằng nhau)
=> S hình thang ABCD = S hình bình hành ABNM (ABNM là hbh có 2 cặp cạnh //) (2)
BE vuông góc MN (BE vuông góc d) => S ABNM = AB x BE (3)
Từ (1) (2) (3)=> S ABCD = S ABEH
\(AB=\dfrac{BH}{\sin A}=\dfrac{1,5}{\sin30^0}=3\left(cm\right)\)
Do đó \(P_{ABCD}=4AB=12\left(cm\right)\)
nói mỗi đường thẳng D ai biết DC DB hay D nào ??? ghi lại kỹ đề nhe ^^
Tự chứng minh tam giác ABD = tam giác BCD (c-c-c) suy ra diện tích của chúng bằng nhau. Vậy S ABCD = 2.S ABD.
Tam giác vuông BAH có góc A = 30 độ >> BH = 1/2 AB >> AB = 6.2 cm ( t/c tam giác nửa đều ). >> AD = 6.2 cm.
Vậy S ABCD = 2.S ABD = 3.1 x 6.2 = 19.22 ( cm2 )
( Bạn có biết tam giác nửa đều là gì k đấy ? :v )