Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ko đúng đâu chị ạ:)
a).tam giác ADE có: {DMlà đường trung tuyến của ΔADEANlà đường trung tuyến của ΔADE{DMlà đường trung tuyến của ΔADEANlà đường trung tuyến của ΔADE nên I là trọng tâm của tam giác ADE
⇒⇒EI cũng là đường trung tuyến của tam giác ADE
⇒⇒AF=FD
b). ta có ⎧⎩⎨⎪⎪AH⊥DCBO⊥DCAB//DC{AH⊥DCBO⊥DCAB//DCnên tứ giác ABOH là hình chữ nhật.⇒AB=HO⇒AB=HO
hai tam giác vuông ADH và COB có: {DA=BCADHˆ=BCOˆ{DA=BCADH^=BCO^ nên chúng bằng nhau (ch-gn)
⇒DH=OC⇒DH=OC
ta có: FE=AB+CD2=AB+HO+DH+OC2=2HO+2OC2=HO+OC=HCFE=AB+CD2=AB+HO+DH+OC2=2HO+2OC2=HO+OC=HC
đồng thời IEFE=23IEFE=23(I là trong tâm tam giác ADE)
nên EIHC=23EIHC=23 hay EI=23HC
P.s:Mới lớp 6 thôi mak :)
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)
b) Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang(Định nghĩa hình thang)
Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\dfrac{OA}{OC}=\dfrac{2}{3}\)
=>\(OC=1,5OA\)
\(\dfrac{OB}{OD}=\dfrac{2}{3}\)
=>\(OD=3\cdot\dfrac{OB}{2}=1,5OB\)
AO+OC=AC
=>1,5OA+OA=OC
=>OC=2,5OA
=>\(\dfrac{OC}{OA}=2,5=\dfrac{5}{2}\)
=>\(\dfrac{OA}{OC}=\dfrac{2}{5}\)
OB+OD=BD
=>BD=1,5OB+OB=2,5OB
=>\(\dfrac{OB}{BD}=\dfrac{2}{5}\)
Xét ΔADC có MO//DC
nên \(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)
=>\(\dfrac{MO}{9}=\dfrac{2}{5}=0,4\)
=>MO=0,4*9=3,6(cm)
Xét ΔBDC có ON//DC
nên \(\dfrac{ON}{DC}=\dfrac{BO}{BD}\)
=>\(\dfrac{ON}{9}=\dfrac{2}{5}\)
=>ON=0,4*9=3,6(cm)
MN=MO+ON
=3,6+3,6
=7,2(cm)