Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
......................?
mik ko biết
mong bn thông cảm
nha ................
Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!
Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.
Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:
$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$
Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:
$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)
⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$
⇒ $\(CH=DK=\dfrac{120}{13}\)$
Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:
$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$
Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
a, do CC' là chiều cao \(=>CC'\perp AD\)
theo giả thiết \(AD=10cm=>AD^2=100cm\)
mà \(AC=8cm,DC=6cm=>AC^2+DC^2=100cm\)
\(=>AC^2+CD^2=AD^2\)=>\(\Delta ADC\) vuông tại C(pytago đảo)
áp dụng hệ thức lượng\(CC'.AD=AC.CD=>CC'=\dfrac{8.6}{10}=4,8cm\)
b,theo t/c hình thang cân \(=>\left\{{}\begin{matrix}AB=CD=6cm\\AC=BD=8cm\end{matrix}\right.\)
hạ thêm \(BE\perp AD\)
áp dụng hệ thức lượng\(=>\left\{{}\begin{matrix}C'D=\dfrac{CD^2}{AD}\\AE=\dfrac{AB^2}{AD}\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}C'D=\dfrac{6^2}{10}=3,6cm\\AE=\dfrac{6^2}{10}=3,6cm\end{matrix}\right.\)
\(=>EC'=AD-AE-C'D=10-3,6-3,6=2,8cm\)
ta chứng minh được \(BEC'C\) là hình chữ nhật\(=>EC'=BC=2,8cm\)
\(S\left(ABCD\right)=\dfrac{1}{2}.\left(AD+BC\right).CC'=\dfrac{1}{2}\left(10+2,8\right).4,830,72cm^2\)
đoạn cuối ấy tôi viết vôi quá
\(S\left(ABCD\right)=\dfrac{1}{2}\left(AD+BC\right).CC'=\dfrac{1}{2}\left(10+2,8\right).4,8=30,72cm^2\)