K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABDE có

AB//DE

AE//BD

=>ABDE là hình bình hành

b: ABDE là hình bìnhhành

=>AB=DE=7cm

=>CE=7+18=25cm

BD=AE=15cm

Vì AE^2+AC^2=CE^2

nên ΔAEC vuông tại A

c: AH=15*20/25=300/25=12cm

\(S_{ABCD}=\dfrac{1}{2}\cdot12\cdot\left(7+18\right)=25\cdot6=150\left(cm^2\right)\)

NM
24 tháng 9 2021

undefinedbạn chịu khó nhìn chữ viết tay nhé

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

a: Xét tứ giác ABDE có

AB//DE

AE//BD

=>ABDE là hbh

=>AB=DE=5cm và BD=AE=12cm

EC=5+15=20cm

EC^2=AE^2+AC^2

=>ΔAEC vuông tại A

b: Kẻ AH vuông góc EC tại H

=>AH=15*20/25=300/25=12cm

S ABCD=1/2*AH*(AB+CD)

=1/2*12*(5+15)=20*6=120cm2