K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

a, Vì AB // CD => \(\widehat{ABD}\)= \(\widehat{ODC}\)\(\widehat{BAD}\) =\(\widehat{OCD}\)(SLT)

       Nên  ΔAOB ᔕ ΔCOD (g.g)

Vì AB // CD => \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{4}{8}=\dfrac{1}{2}\) = OB/OD = AB/CD (ĐL Ta-lét)

=> OA.OD =OB.OC

Ta có: OA = \(\dfrac{DC}{2}\)\(\dfrac{6}{2}\) = 3 (cm)

b, Vì AB // DM => \(\dfrac{DM}{AB}=\dfrac{MI}{AI}\) (1)

Vì AB // MI => \(\dfrac{MC}{AB}=\dfrac{MK}{AB}\)(2)

Ta có: MD = MC (3)

(1), (2) và (3) => \(\dfrac{MI}{AI}=\dfrac{MK}{KB}\)<=> IK // AB ( Định lí Ta-lét đảo)

a: Xét ΔAOB và ΔCOD có

\(\widehat{AOB}=\widehat{COD}\)

\(\widehat{OAB}=\widehat{OCD}\)

Do đó: ΔAOB\(\sim\)ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

\(\dfrac{AB}{CD}=\dfrac{OA}{OC}\)

=>\(OA=\dfrac{4}{8}\cdot6=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

b: 

a:

Sửa đề; EA=6cm

Xét ΔEMD và ΔEBA có

góc EMD=góc EBA

góc MED=góc BEA

=>ΔEMD đồng dạng vơi ΔEBA

=>MD/BA=ED/EA

=>10/BA=8/6=4/3

=>BA=7,5cm

b: Xét ΔFMC và ΔFBA có

góc FMC=góc FBA

góc MFC=góc BFA

=>ΔFMC đồng dạng với ΔFBA

=>FM/FB=MC/BA=MD/BA=EM/EA

=>FE//AB

14 tháng 3 2023

ko bít

 

a: Xét ΔIAB và ΔIMD có

góc IAB=góc IMD

góc AIB=góc MID

=>ΔIAB đồng dạng với ΔIMD

=>IA/IM=AB/MD=IB/ID

Xét ΔKAB và ΔKCM có

góc KAB=góc KCM

góc AKB=góc CKM

=>ΔKAB đồng dạng với ΔKCM

=>KA/KC=KB/KM=AB/CM

KB/KM=AB/CM

AI/IM=AB/MD

mà CM=MD

nên KB/KM=AI/IM

=>MI/IA=MK/KB

Xét ΔMAB có MI/IA=MK/KB

nên IK//AB

b: Xét ΔAMC có IK//MC

nên IK/MC=AI/AM

Xét ΔADM có EI//DM

nên EI/DM=AI/AM

Xét ΔBMC có KF//MC

nên KF/MC=BK/BM

Xét ΔMAB có IK//AB

nên AI/AM=BK/BM

=>IK/MC=FK/MC=EI/DM

mà MC=DM

nên IK=FK=EI

24 tháng 12 2023

b) Theo Thales: \(\dfrac{DE}{DC}=\dfrac{AO}{AC};\dfrac{CF}{CD}=\dfrac{BO}{BD}\)

Theo câu a thì \(\dfrac{AO}{AC}=\dfrac{BO}{BD}\) \(\Rightarrow\dfrac{DE}{DC}=\dfrac{CF}{CD}\Rightarrow DE=CF\) (đpcm)

c) Từ \(DE=CF\Rightarrow\dfrac{DE}{EF}=\dfrac{CF}{EF}\)

Mà theo Thales: \(\dfrac{DE}{EF}=\dfrac{IO}{OF};\dfrac{CF}{EF}=\dfrac{JO}{OE}\) 

Do đó \(\dfrac{IO}{OF}=\dfrac{JO}{OE}\) \(\Rightarrow\) IJ//CD//AB

d) Dùng định lý Menelaus đảo nhé bạn. Ta có \(\dfrac{HA}{HD}=\dfrac{AB}{CD}=\dfrac{OA}{OC}\) nê \(\dfrac{HA}{AD}.\dfrac{OC}{OA}=1\). Do K là trung điểm EF mà \(DE=CF\) nên K cũng là trung điểm CD hay \(\dfrac{KD}{KC}=1\). Do đó \(\dfrac{HA}{AD}.\dfrac{KD}{KC}.\dfrac{OC}{OA}=1\). Theo định lý Menalaus đảo \(\Rightarrow\)H, O, K thẳng hàng (đpcm)

 

27 tháng 2 2022

a. Xét △DMI có: AB//DM.

\(\Rightarrow\dfrac{AB}{DM}=\dfrac{IA}{IM}\) (hệ quả định lí Ta-let)

a. Xét △CMK có: AB//CM.

\(\Rightarrow\dfrac{AB}{CM}=\dfrac{KB}{KM}\) (hệ quả định lí Ta-let)

Mà \(DM=CM\) (M là trung điểm DC)

\(\Rightarrow\dfrac{AB}{DM}=\dfrac{KB}{KM}\)

-Xét △ABM có: \(\dfrac{IA}{IM}=\dfrac{KB}{KM}\left(=\dfrac{AB}{DM}\right)\)

\(\Rightarrow\)IK//AB (định lí Ta-let đảo).

b) -Xét △ADM có: EI//DM.

\(\Rightarrow\dfrac{EI}{DM}=\dfrac{AI}{AM}\) (hệ quả định lí Ta-let)

-Xét △ACM có: KI//CM.

\(\Rightarrow\dfrac{IK}{CM}=\dfrac{AI}{AM}\) (hệ quả định lí Ta-let)

Mà  \(DM=CM\) (M là trung điểm DC)

\(\Rightarrow\dfrac{IK}{DM}=\dfrac{AI}{AM}=\dfrac{EI}{DM}\) nên \(IK=EI\).

-Xét △BCM có: KF//CM.

\(\Rightarrow\dfrac{KF}{CM}=\dfrac{BK}{BM}\) (hệ quả định lí Ta-let)

-Xét △BDM có: IK//DM.

\(\Rightarrow\dfrac{IK}{DM}=\dfrac{BK}{BM}\) (hệ quả định lí Ta-let)

Mà  \(DM=CM\) (M là trung điểm DC)

\(\Rightarrow\dfrac{IK}{CM}=\dfrac{BK}{BM}=\dfrac{KF}{CM}\) nên \(IK=KF\)

-Vậy \(EI=IK=KF\)