Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối E , G , H , K . Ta được :
- \(S_{KAB}=S_{ABD}\) (vì \(AK=AD\)và chung đường cao hạ từ đỉnh \(B\).)
-\(S_{AKE}=S_{KAB}\cdot2\)(vì \(S_{KAB}=S_{KBE}\)chung đường cao hạ từ đỉnh \(K\)và \(AB=BE\))
\(\Rightarrow S_{KAE}=S_{ABD}\cdot2\) và \(S_{GHC}=S_{BCD}\cdot2\)
\(\Rightarrow S_{ABCD}\cdot2=S_{KAE}+S_{GHC}=S_{ABD}\cdot2+S_{BCD}\cdot2\)
\(\Rightarrow S_{EGHK}=30\times5=150\left(m^2\right)\)
ĐS: 150 m2
+)gọi AH là đường cao tam giác ABC .
+)S tam giác ACD LÀ 1/2 x AH x CD = 1/2 x AH x 1/2 x BC = 1/2 x 250 = 125 cm^2
a) Ta có: BD // MN
=> Khoảng cách từ BD đến MN = khoảng cách từ MN đến BD
Và gọi khoảng cách đó là h
\(\Rightarrow\hept{\begin{cases}S_{\Delta BMN}=\frac{1}{2}h\cdot MN\\S_{\Delta DMN}=\frac{1}{2}h\cdot MN\end{cases}}\Rightarrow S_{\Delta BMN}=S_{\Delta DMN}\)
b) \(\frac{S_{\Delta DMA}}{S_{\Delta DAC}}=\frac{MA}{AC}=\frac{1}{2}\Rightarrow S_{\Delta DMA}=\frac{1}{2}S_{\Delta DAC}\)
\(\frac{S_{\Delta ABM}}{S_{\Delta ABC}}=\frac{MA}{AC}=\frac{1}{2}\Rightarrow S_{\Delta ABM}=\frac{1}{2}S_{\Delta ABC}\)
\(\Rightarrow S_{\Delta DMA}+S_{\Delta ABM}=\frac{1}{2}\cdot\left(S_{\Delta DAC}+S_{\Delta ABC}\right)\)
\(\Rightarrow S_{ABMD}=\frac{1}{2}\cdot16=8\left(cm^2\right)\)
mk can loi giai bai nay trong toi nay