K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
15 tháng 9 2021
Lời giải:
a. $BD\perp BC, BD=BC$ nên tam giác $BDC$ vuông cân tại $B$
$\Rightarrow \widehat{C}=45^0$
$\widehat{ABC}=180^0-\widehat{C}=180^0-45^0=135^0$
b.
Ta có: $\widehat{ABD}=\widehat{ABC}-\widehat{DBC}=135^0-90^0=45^0$ nên tam giác $ABD$ vuông cân tại $A$
$\Rightarrow AD=AB=3$
Áp dụng định lý Pitago:
$BD=\sqrt{AB^2+AD^2}=\sqr{3^2+3^2}=3\sqrt{2}$ (cm)
$BC=BD=3\sqrt{2}$ (cm)
Tam giác $BDC$ vuông cân tại $B$ nên áp dụng định lý Pitago:
$DC=\sqrt{BC^2+BD^2}=\sqrt{(3\sqrt{2})^2+(3\sqrt{2})^2}=6$ (cm)
DUNG 0
1.a) xét tam giác DBC có :
góc B = 90 độ ( BD vuông góc BC)
BD=BC
=> tam giác DBC là tam giác vuông cân => góc C =góc BDC= 45 độ
xét hình thang ABCD có :
góc ABC = 360 độ - ( 90 dộ+90 độ+45 độ) = 135 độ
b) ta có :
góc ABD = góc ABC - góc DBC = .135 độ - 90 độ = 45 độ
BD = cos ABD . AB = cos 45 độ . 3 = ......cm
mà BD=BC=> BC =.....cm
xét tam giác vuông cân DBC có
CD^2= BC^2 + BD^2 (định lí pi-ta-go)
<=>.................
<=>.................